1
|
Xu H, Wang X, Zhang Z, Hu J, Yu Y, Wang J, Liu Y, Liu J. Staphylococcus aureus promotes its intracellular survival by inhibiting Rab11-Rab11FIP4-mediated vesicle trafficking. Vet Microbiol 2024; 293:110091. [PMID: 38626624 DOI: 10.1016/j.vetmic.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
Mastitis in dairy cows is mainly caused by bacteria, in which Staphylococcus aureus appears frequently. Epithelial cells, as a major physical barrier of mammary gland, play an important role in preventing mastitis in dairy cows. Our previous study reported that Rab11fip4 (an effector of Rab11) was significantly changed in response to stimulation by S. aureus. So, in this study, the role of Rab11A in phagocytosis of bovine mammary epithelial cells (MAC-T) against S. aureus was evaluated. First, changes of Rab11A and Rab11fip4 were analyzed in response to S. aureus by immunofluorescence and western blotting. Subsequently, the effects of Rab11A and Rab11fip4 on proliferation of S. aureus, as well as formation and function of late endosomes (LEs) and lysosomes (LYSs) were investigated. The results showed that, after infection, Rab11A and Rab11fip4 were recruited to phagosomes containing S. aureus. Rab11A promoted bacterial clearance and rescues the destruction of LEs and LYSs by S. aureus, whereas Rab11fip4 did the opposite. These findings provide new insights into phagocytosis and control of S. aureus in host cells, thus lay the foundation to elucidate the pathogenesis of S. aureus in bovine mastitis.
Collapse
Affiliation(s)
- Huiling Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Zhizhong Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Jiaqing Hu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Yongtao Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750000, China
| | - Jiandong Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China; Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China.
| |
Collapse
|
2
|
Liang Y, Wang D. TLR9 gene polymorphism confers risk to Helicobacter pylori infection in Jiangsu, China and its inspiration for precision nursing car. Technol Health Care 2024; 32:3073-3082. [PMID: 38788101 DOI: 10.3233/thc-231677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
BACKGROUND The number of studies which investigate the association between TLR9 gene polymorphism and Helicobacter pylori (H.pylori) infection is low and their results are not consistent. OBJECTIVE To get a better understanding of the association between TLR9 gene polymorphism and H.pylori infection, providing basis and risk assessment for precision nursing for hospital nurses. METHODS A total of 630 normal physical examination subjects were collected including 240 H.pylori (+) and 390 H.pylori (-) subjects. PCR-RFLP was applied to investigate the present polymorphism. At the same time, the meta-analysis was performed between TLR9 gene polymorphism and H.pylori infection risk. RESULTS Three genotypes (TT, TC, and CC) were observed for TLR9 gene rs187084 polymorphism. CC genotype and C allele were responsible for the significant associations (all P< 0.05). Meta-analysis found no significant associations were found by any genetic models (all P> 0.05). CONCLUSION TLR9 polymorphism has a crucial role in H.pylori infection risk and CC genotype confers increased risk to H.pylori infection in the Southern Chinese population. After understanding the influence of TLR9 gene polymorphism on H.pylori infection, nurses can improve the risk assessment of Helicobacter pylori infection and provide health education more personally.
Collapse
|
3
|
Kalia VC, Lee JK, Rangappa KS, Gupta VK. Special issue Microbes in Cancer Research in 'Seminar in Cancer Biology' 2021. Semin Cancer Biol 2022; 86:1102-1104. [PMID: 34979275 DOI: 10.1016/j.semcancer.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | | | - Vijai Kumar Gupta
- Center for Safe and Improved Food, & Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
4
|
Zamyatnin AA, Gregory LC, Townsend PA, Soond SM. Beyond basic research: the contribution of cathepsin B to cancer development, diagnosis and therapy. Expert Opin Ther Targets 2022; 26:963-977. [PMID: 36562407 DOI: 10.1080/14728222.2022.2161888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In view of other candidate proteins from the cathepsin family of proteases holding great potential in being targeted during cancer therapy, the importance of Cathepsin B (CtsB) stands out as being truly exceptional. Based on its contribution to oncogenesis, its intimate connection with regulating apoptosis and modulating extracellular and intracellular functions through its secretion or compartmentalized subcellular localization, collectively highlight its complex molecular involvement with a myriad of normal and pathological regulatory processes. Despite its complex functional nature, CtsB is emerging as one of the few cathepsin proteases that has been extensively researched to yield tangible outcomes for cancer therapy. AREAS COVERED In this article, we review the scientific literature that has justified or shaped the importance of CtsB expression in cancer progression, from the perspective of highlighting a paradigm that is rapidly changing from basic research toward a broader clinical and translational context. EXPERT OPINION In doing so, we detail its maturation as a diagnostic marker through describing the development of CtsB-specific Activity-Based Probes, the rapid evolution of these toward a new generation of Prodrugs, and the evaluation of these in model systems for their therapeutic potential as anti-cancer agents in the clinic.
Collapse
Affiliation(s)
- Andrey A Zamyatnin
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Levy C Gregory
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Paul A Townsend
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Surinder M Soond
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
5
|
李 蔚, 石 永, 郭 玉, 田 声. [Nur77 promotes invasion and migration of gastric cancer cells through the NF-κB/IL-6 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1410-1417. [PMID: 36210716 PMCID: PMC9550556 DOI: 10.12122/j.issn.1673-4254.2022.09.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze the association of Nur77 with overall survival of gastric cancer patients and investigate the role of Nur77 in invasion and migration of gastric cancer cells. METHODS Oncomine database was used to analyze the expression of Nur77 in gastric cancer and gastric mucosa tissues, and the distribution characteristics of Nur77 protein between gastric cancer and normal tissues were compared using Human Protein Atlas. GEPIA2 was used to analyze the relationship of Nur77 expression and the patients' survival. The expression of Nur77 in gastric cancer cell lines GES-1, AGS and MKN-45 were detected by Western blotting. The regulatory interactions between IL-6 and Nur77 were verified by transfecting the cells with specific Nur-77 siRNA and Nur-77-overexpressing plasmid. The changes in migration ability of the cells following Nur-77 knockdown were assessed with scratch assay. The effect of Nur-77 overexpression or IL-6 knockdown, or their combination, on migration and invasion of the gastric cancer cells were examined using Transwell assay. The effect of Nur77 expression level on NF-κB/IL-6 pathway activation was analyzed using Western blotting. RESULTS Oncomine database showed that gastric cancer tissues expressed a significantly higher level of Nur77 mRNA than normal tissues (P < 0.05). Nur77 expression was detected mostly in the nucleus, and a high Nur77 expression was associated with a poor survival outcome of the patients (P < 0.05). In gastric cancer cells, the high expression of Nur77 participated in the regulation of IL-6. Nur77 silencing significantly lowered the migration ability of the cells (P < 0.05), and IL-6 silencing significantly attenuated the enhanced migration caused by Nur77 overexpression (P < 0.05). Nur77 participates in the activation of NF-κB/IL-6 signaling pathway by regulating the expression of p-p65, p65, p-Stat3 and Stat3. CONCLUSION A high Nur77 expression is strongly correlated with a poor prognosis of gastric cancer patients. Nur77 promotes the invasion and migration of gastric cancer cells possibly by regulating the NF-κB/IL-6 signaling pathway.
Collapse
Affiliation(s)
- 蔚 李
- />常州市金坛第一人民医院肿瘤内科,江苏 常州 213200Department of Oncology, Changzhou Jintan First People's Hospital, Changzhou 213200, China
| | - 永康 石
- />常州市金坛第一人民医院肿瘤内科,江苏 常州 213200Department of Oncology, Changzhou Jintan First People's Hospital, Changzhou 213200, China
| | - 玉华 郭
- />常州市金坛第一人民医院肿瘤内科,江苏 常州 213200Department of Oncology, Changzhou Jintan First People's Hospital, Changzhou 213200, China
| | - 声望 田
- />常州市金坛第一人民医院肿瘤内科,江苏 常州 213200Department of Oncology, Changzhou Jintan First People's Hospital, Changzhou 213200, China
| |
Collapse
|
6
|
Anti-Helicobacter pylori, anti-Inflammatory, and Antioxidant Activities of Trunk Bark of Alstonia boonei (Apocynaceae). BIOMED RESEARCH INTERNATIONAL 2022; 2022:9022135. [PMID: 36158881 PMCID: PMC9499789 DOI: 10.1155/2022/9022135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
An ulcer is an erosion of the gastric mucosa that occurs following an imbalance between the aggression and protective factors and/or an infection with Helicobacter pylori (H. pylori). About 90-100% of duodenal ulcers and 70-80% of gastric ulcers are caused by H. pylori. The objective of this work was to evaluate in vitro the anti-H. pylori activity and then the anti-inflammatory and antioxidant properties of aqueous and methanol extracts of Alstonia boonei. The anti-H. pylori tests (CMI and antiureasic activity) were determined using the agar well diffusion method, the microbroth dilution method, and the measurement of ammonia production by the indophenol method; the anti-inflammatory properties were evaluated by inhibition of proteinases, denaturation of albumin, production of NO by macrophages, cell viability, and hemolysis of red blood cells by heat; then, the antioxidant properties were evaluated by the FRAP method (ferric reducing antioxidant power) and the DPPH (1,1-diphenyl-2-picrylhydrazyl) test. The results show that the best trapping of the DPPH radical was obtained with the methanol extract (EC50 = 8.91 μg/mL) compared to the aqueous extract (EC50 = 19.86 μg/mL). The methanol extract also showed greater iron-reducing activity than the aqueous extract and vitamin C. Furthermore, at the concentration of 200 μg/mL, the methanol extract showed a percentage (96.34%) strains of H. pylori higher than that of the aqueous extract (88.52%). The MIC90 of the methanol extract was lower than that of the aqueous extract. The methanol extract showed a higher percentage inhibition (85%) of urease than the aqueous extract (73%). The methanol extract at a concentration of 1000 μg/mL showed the greatest ability to inhibit proteinase activity, albumin denaturation, and red blood cell hemolysis; on the other hand, maximum cell viability and greater production of nitrite oxide by macrophages were obtained with the aqueous extract. Aqueous and methanol extracts of Alstonia boonei possess anti-H. pylori which would probably be linked to their antioxidant and anti-inflammatory properties.
Collapse
|
7
|
He J, Hu W, Ouyang Q, Zhang S, He L, Chen W, Li X, Hu C. Helicobacter pylori infection induces stem cell-like properties in Correa cascade of gastric cancer. Cancer Lett 2022; 542:215764. [PMID: 35654291 DOI: 10.1016/j.canlet.2022.215764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 02/09/2023]
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related death. Its poor prognosis is attributed to unclear pathogenesis. Currently, the most widely accepted model for elucidating the mechanism of GC is the Correa cascade, which covers several histological lesions of the gastric mucosa. GC stem cells (CSCs) are crucial for oncogenesis in the Correa cascade and GC progression. As Helicobacter pylori (H. pylori) is the etiological factor in the Correa cascade, growing evidence suggests that enhancement of gastric stem cell-like properties and increase in CSCs correlate with H. pylori infection. In this paper, we review recent studies that present pathogenic mechanisms by which H. pylori induces gastric stem cell-like properties and CSCs, which may supplement the existing Correa model of GC. First, the dysfunction of developmental signaling pathways associated with H. pylori infection leads to the enhancement of gastric stemness. Second, H. pylori infection promotes alteration of the gastric mucosal microenvironment. In addition, epithelial-mesenchymal transition (EMT) may contribute to H. pylori-induced gastric stemness. Taken together, understanding these pathogeneses will provide potential therapeutic targets for the treatment of CSCs and malignant GC in H. pylori induced-Correa cascade of GC.
Collapse
Affiliation(s)
- JunJian He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - WeiChao Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - ShengWei Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - LiJiao He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - WeiYan Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - XinZhe Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - ChangJiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|