1
|
Guevara-Ramírez P, Cadena-Ullauri S, Paz-Cruz E, Ruiz-Pozo VA, Tamayo-Trujillo R, Cabrera-Andrade A, Zambrano AK. Gut Microbiota Disruption in Hematologic Cancer Therapy: Molecular Insights and Implications for Treatment Efficacy. Int J Mol Sci 2024; 25:10255. [PMID: 39408584 PMCID: PMC11476909 DOI: 10.3390/ijms251910255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Hematologic malignancies (HMs), including leukemia, lymphoma, and multiple myeloma, involve the uncontrolled proliferation of abnormal blood cells, posing significant clinical challenges due to their heterogeneity and varied treatment responses. Despite recent advancements in therapies that have improved survival rates, particularly in chronic lymphocytic leukemia and acute lymphoblastic leukemia, treatments like chemotherapy and stem cell transplantation often disrupt gut microbiota, which can negatively impact treatment outcomes and increase infection risks. This review explores the complex, bidirectional interactions between gut microbiota and cancer treatments in patients with HMs. Gut microbiota can influence drug metabolism through mechanisms such as the production of enzymes like bacterial β-glucuronidases, which can alter drug efficacy and toxicity. Moreover, microbial metabolites like short-chain fatty acids can modulate the host immune response, enhancing treatment effectiveness. However, therapy often reduces the diversity of beneficial bacteria, such as Bifidobacterium and Faecalibacterium, while increasing pathogenic bacteria like Enterococcus and Escherichia coli. These findings highlight the critical need to preserve microbiota diversity during treatment. Future research should focus on personalized microbiome-based therapies, including probiotics, prebiotics, and fecal microbiota transplantation, to improve outcomes and quality of life for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Alejandro Cabrera-Andrade
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito 170124, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170124, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| |
Collapse
|
2
|
Wang H, Zhang Y, Zhou Q, Yu L, Fu J, Lin D, Huang L, Lai X, Wu L, Zhang J, Zi J, Liao X, Huang S, Xie Y, He Y, Yang L. Microbial metagenomic shifts in children with acute lymphoblastic leukaemia during induction therapy and predictive biomarkers for infection. Ann Clin Microbiol Antimicrob 2024; 23:52. [PMID: 38879505 PMCID: PMC11180392 DOI: 10.1186/s12941-024-00717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Emerging evidence has indicated a link between the gut microbiota and acute lymphoblastic leukaemia (ALL). However, the acute changes in gut microbiota during chemotherapy and the predictive value of baseline gut microbiota in infectious complication remain largely unknown. METHODS Faecal samples (n = 126) from children with ALL (n = 49) undergoing induction chemotherapy were collected at three timepoints, i.e., initiation of chemotherapy (baseline, T0), 7 days (T1) and 33 days (T2) after initiation of chemotherapy. Gut microbiome profile was performed via metagenomic shotgun sequencing. The bioBakery3 pipeline (Kneaddata, Metaphlan 3 and HUMAnN) was performed to assign taxonomy and functional annotations. Gut microbiome at T0 were used to predict infection during chemotherapy. RESULTS The microbial diversities and composition changed significantly during chemotherapy, with Escherichia coli, Klebsiella pneumoniae and Bifidobacterium longum being the most prominent species. The microbial metabolic pathways were also significantly altered during chemotherapy, including the pathway of pyruvate fermentation to acetate and lactate, and assimilatory sulfate reduction pathway. The receiver operating characteristic (ROC) models based on Bifidobacterium longum at T0 could predict infectious complications during the first month of chemotherapy with the area under the curve (AUC) of 0.720. CONCLUSIONS Our study provides new insights into the acute changes in microbial and functional characteristics in children with ALL during chemotherapy. The baseline gut microbiota could be potential biomarkers for infections during chemotherapy. TRIAL REGISTRATION The study was approved by the Ethics Committee of Zhujiang Hospital, Southern Medical University (2021-KY-171-01) and registered on http://www.chictr.org.cn (ChiCTR2200065406, Registration Date: November 4, 2022).
Collapse
Affiliation(s)
- Huidi Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yajie Zhang
- Department of Paediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Qianyi Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Lihua Yu
- Department of Paediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jingxiang Fu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Danna Lin
- Department of Paediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Lulu Huang
- Department of Paediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xiaorong Lai
- Department of Paediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Wu
- Department of Paediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jingxin Zhang
- Department of Paediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Juan Zi
- Department of Paediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Liao
- Department of Paediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Siying Huang
- Department of Paediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yugu Xie
- Department of Laboratory Medicine, Clinical Biobank Centre, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Lihua Yang
- Department of Paediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
3
|
Huang X, Cai H, Zhao Y, Kang Y. The Gut Microbiome and Acute Leukemia: Implications for Early Diagnostic and New Therapies. Mol Nutr Food Res 2024; 68:e2300551. [PMID: 38059888 DOI: 10.1002/mnfr.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Indexed: 12/08/2023]
Abstract
Acute leukemia (AL), one of the hematological malignancies, shows high heterogeneity. Tremendous progresses are achieved in treating AL with novel targeted drugs and allogeneic hematopoietic stem cell transplantation, there are numerous issues including pathogenesis, early diagnosis, and therapeutic efficacy of AL to be solved. In recent years, an increasing number of studies regarding microbiome have shed more lights on the role of gut microbiota in promoting AL progression. Mechanisms related to the role of gut microbiota in enhancing AL genesis are summarized in the present work, especially on critical pathways like leaky gut, bacterial dysbiosis, microorganism-related molecular patterns, and bacterial metabolites, resulting in AL development. Additionally, the potential of gut microbiota as the biomarker for early AL diagnosis is discussed. It also outlooks therapies targeting gut microbiota for preventing AL development.
Collapse
Affiliation(s)
- Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Haibo Cai
- Department of Oncology, Yunfeng Hospital, Xuanwei City, Yunnan Province, 655400, China
| | - Yanqin Zhao
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| |
Collapse
|
4
|
Pötgens SA, Lecop S, Havelange V, Li F, Neyrinck AM, Neveux N, Maertens J, Walter J, Schoemans H, Delzenne NM, Bindels LB. Gut microbiota alterations induced by intensive chemotherapy in acute myeloid leukaemia patients are associated with gut barrier dysfunction and body weight loss. Clin Nutr 2023; 42:2214-2228. [PMID: 37806074 DOI: 10.1016/j.clnu.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND & AIMS Acute myeloid leukaemia (AML) chemotherapy has been reported to impact gut microbiota composition. In this study, we investigated using a multi -omics strategy the changes in the gut microbiome induced by AML intense therapy and their association with gut barrier function and cachectic hallmarks. METHODS 10 AML patients, allocated to standard induction chemotherapy (SIC), were recruited. Samples and data were collected before any therapeutic intervention (T0), at the end of the SIC (T1) and at discharge (T4). Gut microbiota composition and function, markers of inflammation, metabolism, gut barrier function and cachexia, as well as faecal, blood and urine metabolomes were assessed. RESULTS AML patients demonstrated decreased appetite, weight loss and muscle wasting during hospitalization, with an incidence of cachexia of 50%. AML intensive treatment transiently impaired the gut barrier function and led to a long-lasting change of gut microbiota composition characterized by an important loss of diversity. Lactobacillaceae and Campylobacter concisus were increased at T1 while Enterococcus faecium and Staphylococcus were increased at T4. Metabolomics analyses revealed a reduction in urinary hippurate and faecal bacterial amino acid metabolites (bAAm) (2-methylbutyrate, isovalerate, phenylacetate). Integration using DIABLO revealed a deep interconnection between all the datasets. Importantly, we identified bacteria which disappearance was associated with impaired gut barrier function (Odoribacter splanchnicus) and body weight loss (Gemmiger formicilis), suggesting these bacteria as actionable targets. CONCLUSION AML intensive therapy transiently impairs the gut barrier function while inducing enduring alterations in the composition and metabolic activity of the gut microbiota that associate with body weight loss. TRIAL REGISTRATION NCT03881826, https://clinicaltrials.gov/ct2/show/NCT03881826.
Collapse
Affiliation(s)
- Sarah A Pötgens
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Sophie Lecop
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Violaine Havelange
- Department of Hematology, Cliniques Universitaires Saint-Luc, UCLouvain, Université catholique de Louvain, Brussels, Belgium; Experimental Medicine Unit, De Duve Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Fuyong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie Neveux
- Clinical Chemistry Department, Cochin Hospital, Paris Centre University Hospitals, Paris, France
| | - Johan Maertens
- Department of Hematology, University Hospital Gasthuisberg, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jens Walter
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hélène Schoemans
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, ACCENT VV, KU Leuven - University of Leuven, Leuven, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium; Welbio Department, WEL Research Institute, Wavre, Belgium.
| |
Collapse
|
5
|
Xu J, Kang Y, Zhong Y, Ye W, Sheng T, Wang Q, Zheng J, Yang Q, Yi P, Li Z. Alteration of gut microbiome and correlated amino acid metabolism are associated with acute myelocytic leukemia carcinogenesis. Cancer Med 2023; 12:16431-16443. [PMID: 37409640 PMCID: PMC10469656 DOI: 10.1002/cam4.6283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the profiles of gut microbiota and metabolites in acute myelocytic leukemia (AML) patients treated with/without chemotherapy. METHODS Herein, high-throughput 16S rRNA gene sequencing was performed to analysis gut microbiota profiles, and liquid chromatography and mass spectrometry were performed to analysis metabolites profiles. The correlation between gut microbiota biomarkers identified by LEfSe and differentially expressed metabolites were determined by spearman association analysis. RESULTS The results showed the distinguished gut microbiota and metabolites profiles between AML patients and control individuals or AML patients treated with chemotherapy. Compared to normal populations, the ratio of Firmicutes to Bacteroidetes was increased at the phylum level than that in AML patients, and LEfSe analysis identified Collinsella and Coriobacteriaceae as biomarkers of AML patients. Differential metabolite analysis indicated that, compared to AML patients, numerous differential amino acids and analogs could be observed in control individuals and AML patients treated with chemotherapy. Interestingly, spearman association analysis demonstrated that plenty of bacteria biomarkers shows statistical correlations with differentially expressed amino acid metabolites. In addition, we found that both Collinsella and Coriobacteriaceae demonstrate remarkable positive correlation with hydroxyprolyl-hydroxyproline, prolyl-tyrosine, and tyrosyl-proline. CONCLUSION In conclusion, our present study investigated the role of the gut-microbiome-metabolome axis in AML and revealed the possibility of AML treatment by gut-microbiome-metabolome axis in the further.
Collapse
Affiliation(s)
- Jing Xu
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yong Kang
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of HematologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Yan Zhong
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of General MedicineGanzhou People's hospitalGanzhouChina
| | - Wencan Ye
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of HematologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Tianle Sheng
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qingming Wang
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jifu Zheng
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qiuyue Yang
- Department of Scientific Research ProjectWuhan Kindstar Medical Laboratory Co., Ltd.WuhanChina
- Kindstar Global Precision Medicine InstituteWuhanChina
| | - Ping Yi
- Department of Scientific Research ProjectWuhan Kindstar Medical Laboratory Co., Ltd.WuhanChina
- Kindstar Global Precision Medicine InstituteWuhanChina
| | - Zhenjiang Li
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
6
|
Zhou Y, Zhou C, Zhang A. Gut microbiota in acute leukemia: Current evidence and future directions. Front Microbiol 2022; 13:1045497. [PMID: 36532458 PMCID: PMC9751036 DOI: 10.3389/fmicb.2022.1045497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 08/18/2023] Open
Abstract
Gut microbiota includes a large number of microorganisms inhabiting the human gastrointestinal tract, which show a wide range of physiological functions, including digestion, metabolism, immunity, neural development, etc., and are considered to play an increasingly important role in health and disease. A large number of studies have shown that gut microbiota are closely associated with the onset and development of several diseases. In particular, the interaction between gut microbiota and cancer has recently attracted scholars' attention. Acute leukemia (AL) is a common hematologic malignancy, especially in children. Microbiota can affect hematopoietic function, and the effects of chemotherapy and immunotherapy on AL are noteworthy. The composition and diversity of gut microbiota are important factors that influence and predict the complications and prognosis of AL after chemotherapy or hematopoietic stem cell transplantation. Probiotics, prebiotics, fecal microbiota transplantation, and dietary regulation may reduce side effects of leukemia therapy, improve response to treatment, and improve prognosis. This review concentrated on the role of the gut microbiota in the onset and development of AL, the response and side effects of chemotherapy drugs, infection during treatment, and therapeutic efficacy. According to the characteristics of gut microbes, the applications and prospects of microbial preparations were discussed.
Collapse
Affiliation(s)
| | | | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Herreros-Pomares A, Llorens C, Soriano B, Zhang F, Gallach S, Bagan L, Murillo J, Jantus-Lewintre E, Bagan J. Oral microbiome in Proliferative Verrucous Leukoplakia exhibits loss of diversity and enrichment of pathogens. Oral Oncol 2021; 120:105404. [PMID: 34225130 DOI: 10.1016/j.oraloncology.2021.105404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Oral microbiome plays an important role in oral diseases. Among them, proliferative verrucous leucoplakia (PVL) is an uncommon form of progressive multifocal leukoplakia with a worryingly rate of malignant transformation. Here, we aimed to characterize the oral microbiome of PVL patients and compare it with those of healthy controls. MATERIAL AND METHODS Oral biopsies from ten PVL patients and five healthy individuals were obtained and used to compare their microbial communities. The sequence of the V3-V4 region of 16S rRNA gene was used as the taxonomic basis to estimate and analyze the composition and diversity of bacterial populations present in the samples. RESULTS Our results show that the oral microbial composition and diversity are significantly different among PVL patients and healthy donors. The average number of observed operational taxonomic units (OTUs) was higher for healthy donors than for PVL, proving a loss of diversity in PVL. Several OTUs were found to be more abundant in either group. Among those that were significantly enriched in PVL patients, potential protumorigenic pathogens like Oribacterium sp. oral taxon 108, Campylobacter jejuni, uncultured Eubacterium sp., Tannerella, and Porphyromonas were identified. CONCLUSION Oral microbiome dysbiosis was found in patients suffering from PVL. To the best of our knowledge, this is the first study investigating the oral microbiome alterations in PVL and, due to the limited number of participants, additional studies are needed. Oral microbiota-based biomarkers may be helpful in predicting the risks for the development of PVL.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de València, Paterna, Valencia, Spain
| | - Beatriz Soriano
- Biotechvana, Parc Cientific, Universitat de València, Paterna, Valencia, Spain
| | - Feiyu Zhang
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain
| | - Sandra Gallach
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Leticia Bagan
- Medicina Oral Unit, Stomatology Department, Valencia University, Spain
| | - Judith Murillo
- Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, Valencia, Spain
| | - Eloísa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain.
| | - José Bagan
- CIBERONC, Valencia, Spain; Medicina Oral Unit, Stomatology Department, Valencia University, Spain; Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, Valencia, Spain.
| |
Collapse
|