1
|
Harada T, Yamada Y, Toda M, Takamatsu Y, Tomita K, Inoue K, Kouzuma A, Watanabe K. Geobacter sulfurreducens strain 60473, a potent bioaugmentation agent for improving the performances of bioelectrochemical systems. J Biosci Bioeng 2025; 139:36-43. [PMID: 39510935 DOI: 10.1016/j.jbiosc.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Bioaugmentation with electrochemically active bacteria (EAB) has been suggested useful for improving the performance of bioelectrochemical systems (BESs) for sustainable energy generation, while its success is dependent on EAB introduced into the systems. Here we report on the isolation of a novel EAB, Geobacter sulfurreducens strain 60473, from microbes that colonized on an anode of a sediment microbial fuel cell. This strain is highly adhesive to graphite electrodes, forms dense biofilms on electrode surfaces, and generates high current densities in BESs. When microbial electrolysis cells (MECs) inoculated with paddy-field soil and fed starch as the major organic substrate were augmented with strain 60473, Geobacter bacteria predominantly colonized on anodes, and MEC performances, including current generation, hydrogen production and organics removal, were substantially improved compared to non-bioaugmented controls. Results suggest that bioaugmentation with electrode-adhesive EAB, such as strain 60473, is a promising approach for improving the performance of BESs, including MECs treating fermentable organics and biomass wastes.
Collapse
Affiliation(s)
- Tomoka Harada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | | | - Mizuki Toda
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuki Takamatsu
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Tomita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kengo Inoue
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
2
|
Jaramillo-Rodríguez JB, Vega-Alvarado L, Rodríguez-Torres LM, Huerta-Miranda GA, Hernández-Eligio A, Juarez K. Global transcriptional analysis of Geobacter sulfurreducens gsu1771 mutant biofilm grown on two different support structures. PLoS One 2023; 18:e0293359. [PMID: 37878651 PMCID: PMC10599522 DOI: 10.1371/journal.pone.0293359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023] Open
Abstract
Electroactive biofilms formation by the metal-reducing bacterium Geobacter sulfurreducens is a step crucial for bioelectricity generation and bioremediation. The transcriptional regulator GSU1771 controls the expression of essential genes involved in electron transfer and biofilm formation in G. sulfurreducens, with GSU1771-deficient producing thicker and more electroactive biofilms. Here, RNA-seq analyses were conducted to compare the global gene expression patterns of wild-type and Δgsu1771 mutant biofilms grown on non-conductive (glass) and conductive (graphite electrode) materials. The Δgsu1771 biofilm grown on the glass surface exhibited 467 differentially expressed (DE) genes (167 upregulated and 300 downregulated) versus the wild-type biofilm. In contrast, the Δgsu1771 biofilm grown on the graphite electrode exhibited 119 DE genes (79 upregulated and 40 downregulated) versus the wild-type biofilm. Among these DE genes, 67 were also differentially expressed in the Δgsu1771 biofilm grown on glass (56 with the same regulation and 11 exhibiting counter-regulation). Among the upregulated genes in the Δgsu1771 biofilms, we identified potential target genes involved in exopolysaccharide synthesis (gsu1961-63, gsu1959, gsu1972-73, gsu1976-77). RT-qPCR analyses were then conducted to confirm the differential expression of a selection of genes of interest. DNA-protein binding assays demonstrated the direct binding of the GSU1771 regulator to the promoter region of pgcA, pulF, relA, and gsu3356. Furthermore, heme-staining and western blotting revealed an increase in c-type cytochromes including OmcS and OmcZ in Δgsu1771 biofilms. Collectively, our findings demonstrated that GSU1771 is a global regulator that controls extracellular electron transfer and exopolysaccharide synthesis in G. sulfurreducens, which is crucial for electroconductive biofilm development.
Collapse
Affiliation(s)
- Juan B. Jaramillo-Rodríguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Luis M. Rodríguez-Torres
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Guillermo A. Huerta-Miranda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alberto Hernández-Eligio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Investigador por México, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Katy Juarez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
3
|
Pereira J, Neves P, Nemanic V, Pereira MA, Sleutels T, Hamelers B, Heijne AT. Starvation combined with constant anode potential triggers intracellular electron storage in electro-active biofilms. WATER RESEARCH 2023; 242:120278. [PMID: 37413745 DOI: 10.1016/j.watres.2023.120278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
The accumulation of electrons in the form of Extracellular Polymeric Substances (EPS) and poly-hydroxyalkanoates (PHA) has been studied in anaerobic processes by adjusting the access of microorganisms to the electron donor and final electron acceptor. In Bio-electrochemical systems (BESs), intermittent anode potential regimes have also recently been used to study electron storage in anodic electro-active biofilms (EABfs), but the effect of electron donor feeding mode on electron storage has not been explored. Therefore, in this study, the accumulation of electrons in the form of EPS and PHA was studied as a function of the operating conditions. EABfs were grown under both constant and intermittent anode potential regimes and fed with acetate (electron donor) continuously or in batch. Confocal Laser Scanning Microscopy (CLSM) and Fourier-Transform Infrared Spectroscopy (FTIR) were used to assess electron storage. The range of Coulombic efficiencies, from 25 to 82%, and the biomass yields, between 10 and 20%, indicate that storage could have been an alternative electron consuming process. From image processing, a 0.92 pixel ratio of poly-hydroxybutyrate (PHB) and amount of cells was found in the batch fed EABf grown under a constant anode potential. This storage was linked to the presence of living Geobacter and shows that energy gain and carbon source starvation were the triggers for intracellular electron storage. The highest EPS content (extracellular storage) was observed in the continuously fed EABf under an intermittent anode potential, showing that constant access to electron donor and intermittent access to the electron acceptor leads to the formation of EPS from the excess energy gained. Tailoring operating conditions can thus steer the microbial community and result in a trained EABf to perform a desired biological conversion, which can be beneficial for a more efficient and optimized BES.
Collapse
Affiliation(s)
- João Pereira
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands; Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Patrícia Neves
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Vivian Nemanic
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands
| | - Maria Alcina Pereira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands; Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Bert Hamelers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands; Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing. Nat Microbiol 2022; 7:1291-1300. [PMID: 35798889 PMCID: PMC9357133 DOI: 10.1038/s41564-022-01159-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
Abstract
Electrically conductive appendages from the anaerobic bacterium Geobacter sulfurreducens were first observed two decades ago, with genetic and biochemical data suggesting that conductive fibres were type IV pili. Recently, an extracellular conductive filament of G. sulfurreducens was found to contain polymerized c-type cytochrome OmcS subunits, not pilin subunits. Here we report that G. sulfurreducens also produces a second, thinner appendage comprised of cytochrome OmcE subunits and solve its structure using cryo-electron microscopy at ~4.3 Å resolution. Although OmcE and OmcS subunits have no overall sequence or structural similarities, upon polymerization both form filaments that share a conserved haem packing arrangement in which haems are coordinated by histidines in adjacent subunits. Unlike OmcS filaments, OmcE filaments are highly glycosylated. In extracellular fractions from G. sulfurreducens, we detected type IV pili comprising PilA-N and -C chains, along with abundant B-DNA. OmcE is the second cytochrome filament to be characterized using structural and biophysical methods. We propose that there is a broad class of conductive bacterial appendages with conserved haem packing (rather than sequence homology) that enable long-distance electron transport to chemicals or other microbial cells.
Collapse
|
5
|
Clark MM, Paxhia MD, Young JM, Manzella MP, Reguera G. Adaptive Synthesis of a Rough Lipopolysaccharide in Geobacter sulfurreducens for Metal Reduction and Detoxification. Appl Environ Microbiol 2021; 87:e0096421. [PMID: 34347518 PMCID: PMC8478458 DOI: 10.1128/aem.00964-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/31/2021] [Indexed: 11/20/2022] Open
Abstract
The ability of some metal-reducing bacteria to produce a rough (no O-antigen) lipopolysaccharide (LPS) could facilitate surface interactions with minerals and metal reduction. Consistent with this, the laboratory model metal reducer Geobacter sulfurreducens PCA produced two rough LPS isoforms (with or without a terminal methyl-quinovosamine sugar) when growing with the soluble electron acceptor fumarate but expressed only the shorter and more hydrophilic variant when reducing iron oxides. We reconstructed from genomic data conserved pathways for the synthesis of the rough LPS and generated heptosyltransferase mutants with partial (ΔrfaQ) or complete (ΔrfaC) truncations in the core oligosaccharide. The stepwise removal of the LPS core sugars reduced the hydrophilicity of the cell and increased outer membrane vesiculation. These changes in surface charge and remodeling did not substantially impact planktonic growth but disrupted the developmental stages and structure of electroactive biofilms. Furthermore, the mutants assembled conductive pili for extracellular mineralization of the toxic uranyl cation but were unable to prevent permeation and mineralization of the radionuclide in the cell envelope. Hence, not only does the rough LPS promote cell-cell and cell-mineral interactions critical to biofilm formation and metal respiration but it also functions as a permeability barrier to toxic metal cations. In doing so, the rough LPS maximizes the extracellular reduction of soluble and insoluble metals and preserves cell envelope functions critical to the environmental survival of Geobacter bacteria in metal-rich environments and their performance in bioremediation and bioenergy applications. IMPORTANCE Some metal-reducing bacteria produce an LPS without the repeating sugars (O-antigen) that decorate the surface of most Gram-negative bacteria, but the biological significance of this adaptive feature was not previously investigated. Using the model representative Geobacter sulfurreducens strain PCA and mutants carrying stepwise truncations in the LPS core sugars, we demonstrate the importance of the rough LPS in the control of cell surface chemistry during the respiration of iron minerals and the formation of electroactive biofilms. Importantly, we describe hitherto overlooked roles for the rough LPS in metal sequestration and outer membrane vesiculation that are critical for the extracellular reduction and detoxification of toxic metals and radionuclides. These results are of interest for the optimization of bioremediation schemes and electricity-harvesting platforms using these bacteria.
Collapse
Affiliation(s)
- Morgen M. Clark
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Michael D. Paxhia
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jenna M. Young
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Michael P. Manzella
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Speers AM, Reguera G. Competitive advantage of oxygen-tolerant bioanodes of Geobacter sulfurreducens in bioelectrochemical systems. Biofilm 2021; 3:100052. [PMID: 34222855 PMCID: PMC8242959 DOI: 10.1016/j.bioflm.2021.100052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 10/31/2022] Open
Abstract
Oxidative stress greatly limits current harvesting from anode biofilms in bioelectrochemical systems yet insufficient knowledge of the antioxidant responses of electricigens prevents optimization. Using Geobacter sulfurreducens PCA as a model electricigen, we demonstrated enhanced oxygen tolerance and reduced electron losses as the biofilms grew in height on the anode. To investigate the molecular basis of biofilm tolerance, we developed a genetic screening and isolated 11 oxygen-tolerant (oxt) strains from a library of transposon-insertion mutants. The aggregative properties of the oxt mutants promoted biofilm formation and oxygen tolerance. Yet, unlike the wild type, none of the mutants diverted respiratory electrons to oxygen. Most of the oxt mutations inactivated pathways for the detoxification of reactive oxygen species that could have triggered compensatory chronic responses to oxidative stress and inhibit aerobic respiration. One of the mutants (oxt10) also had a growth advantage with Fe(III) oxides and during the colonization of the anode electrode. The enhanced antioxidant response in this mutant reduced the system's start-up and promoted current harvesting from bioanodes even in the presence of oxygen. These results highlight a hitherto unknown role of oxidative stress responses in the stability and performance of current-harvesting biofilms of G. sulfurreducens and identify biological and engineering approaches to grow electroactive biofilms with the resilience needed for practical applications.
Collapse
Affiliation(s)
- Allison M Speers
- Department of Microbiology and Molecular Genetics, Michigan State University, USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, USA
| |
Collapse
|