1
|
Xie P, Xu Y, Tang J, Wu S, Gao H. Multifaceted regulation of siderophore synthesis by multiple regulatory systems in Shewanella oneidensis. Commun Biol 2024; 7:498. [PMID: 38664541 PMCID: PMC11045786 DOI: 10.1038/s42003-024-06193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Siderophore-dependent iron uptake is a mechanism by which microorganisms scavenge and utilize iron for their survival, growth, and many specialized activities, such as pathogenicity. The siderophore biosynthetic system PubABC in Shewanella can synthesize a series of distinct siderophores, yet how it is regulated in response to iron availability remains largely unexplored. Here, by whole genome screening we identify TCS components histidine kinase (HK) BarA and response regulator (RR) SsoR as positive regulators of siderophore biosynthesis. While BarA partners with UvrY to mediate expression of pubABC post-transcriptionally via the Csr regulatory cascade, SsoR is an atypical orphan RR of the OmpR/PhoB subfamily that activates transcription in a phosphorylation-independent manner. By combining structural analysis and molecular dynamics simulations, we observe conformational changes in OmpR/PhoB-like RRs that illustrate the impact of phosphorylation on dynamic properties, and that SsoR is locked in the 'phosphorylated' state found in phosphorylation-dependent counterparts of the same subfamily. Furthermore, we show that iron homeostasis global regulator Fur, in addition to mediating transcription of its own regulon, acts as the sensor of iron starvation to increase SsoR production when needed. Overall, this study delineates an intricate, multi-tiered transcriptional and post-transcriptional regulatory network that governs siderophore biosynthesis.
Collapse
Affiliation(s)
- Peilu Xie
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yuanyou Xu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiaxin Tang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shihua Wu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Evolutionary Conserved Short Linear Motifs Provide Insights into the Cellular Response to Stress. Antioxidants (Basel) 2022; 12:antiox12010096. [PMID: 36670957 PMCID: PMC9854524 DOI: 10.3390/antiox12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Short linear motifs (SLiMs) are evolutionarily conserved functional modules of proteins composed of 3 to 10 residues and involved in multiple cellular functions. Here, we performed a search for SLiMs that exert sequence similarity to two segments of alpha-fetoprotein (AFP), a major mammalian embryonic and cancer-associated protein. Biological activities of the peptides, LDSYQCT (AFP14-20) and EMTPVNPGV (GIP-9), have been previously confirmed under in vitro and in vivo conditions. In our study, we retrieved a vast array of proteins that contain SLiMs of interest from both prokaryotic and eukaryotic species, including viruses, bacteria, archaea, invertebrates, and vertebrates. Comprehensive Gene Ontology enrichment analysis showed that proteins from multiple functional classes, including enzymes, transcription factors, as well as those involved in signaling, cell cycle, and quality control, and ribosomal proteins were implicated in cellular adaptation to environmental stress conditions. These include response to oxidative and metabolic stress, hypoxia, DNA and RNA damage, protein degradation, as well as antimicrobial, antiviral, and immune response. Thus, our data enabled insights into the common functions of SLiMs evolutionary conserved across all taxonomic categories. These SLiMs can serve as important players in cellular adaptation to stress, which is crucial for cell functioning.
Collapse
|
3
|
Chen ZR, Guo HW, Liu J, Pan Q, Fu MZ, Qiu YK, Wong NK, Huang YC. Resistance traits and molecular characterization of multidrug-resistant Acinetobacter baumannii isolates from an intensive care unit of a tertiary hospital in Guangdong, southern China. Int Microbiol 2022; 25:471-479. [PMID: 35098390 DOI: 10.1007/s10123-022-00233-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE This study aims to characterize antimicrobial resistance (AMR) of all the non-duplicated Acinetobacter baumannii strains isolated from an intensive care unit in a tertiary hospital during the period of January 1 to December 31, 2015. METHODS A. baumannii (n = 95 strains) isolated from patients was subjected to antimicrobial susceptibility test (AST) by Vitek 2 Compact system to determine minimum inhibitory concentrations, followed by genotyping by enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Resistance genes of interest were PCR amplified and sequenced. RESULTS All isolates were qualified as MDR, with a resistance rate of > 80% to 8 antimicrobials tested. In terms of beta-lactamase detection, the blaOXA23, blaTEM-1, and armA genes were detected frequently at 92.63%, 9 1.58%, and 88.42%, respectively. The metallo-β-lactamase genes blaIMP and blaVIM were undetected. Aph (3')-I was detected in 82 isolates (86.32%), making it the most prevalent aminoglycoside-modifying enzyme (AMEs) encoding gene. In addition, ant (3″)-I was detected at 30.53%, while 26.32% of the strains harbored an aac (6')-Ib gene. ERIC-PCR typing suggested moderate genetic diversity among the isolates, which might be organized into 10 distinct clusters, with cluster A (n = 86 isolates or 90.53%) being the dominant cluster. CONCLUSIONS All of the A. baumannii strains detected in the ICU were MDR clones exhibiting extremely high resistance to carbapenems and aminoglycosides as monitored throughout the study period. They principally belonged to a single cluster of isolates carrying blaOXA23 and armA co-producing different AMEs genes.
Collapse
Affiliation(s)
- Zhuo-Ran Chen
- Microbiology Division, Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Hui-Wu Guo
- Microbiology Division, Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jun Liu
- Microbiology Division, Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Qing Pan
- College of Life Sciences and Oceanology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Mao-Zhang Fu
- Microbiology Division, Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Ying-Kun Qiu
- Microbiology Division, Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Nai-Kei Wong
- Department of Infection Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Yuan-Chun Huang
- Microbiology Division, Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
4
|
Mazzuoli MV, Daunesse M, Varet H, Rosinski-Chupin I, Legendre R, Sismeiro O, Gominet M, Kaminski PA, Glaser P, Chica C, Trieu-Cuot P, Firon A. The CovR regulatory network drives the evolution of Group B Streptococcus virulence. PLoS Genet 2021; 17:e1009761. [PMID: 34491998 PMCID: PMC8448333 DOI: 10.1371/journal.pgen.1009761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/17/2021] [Accepted: 08/09/2021] [Indexed: 01/31/2023] Open
Abstract
Virulence of the neonatal pathogen Group B Streptococcus is under the control of the master regulator CovR. Inactivation of CovR is associated with large-scale transcriptome remodeling and impairs almost every step of the interaction between the pathogen and the host. However, transcriptome analyses suggested a plasticity of the CovR signaling pathway in clinical isolates leading to phenotypic heterogeneity in the bacterial population. In this study, we characterized the CovR regulatory network in a strain representative of the CC-17 hypervirulent lineage responsible of the majority of neonatal meningitis. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR network characterized by the direct repression of a large array of virulence-associated genes and the extent of co-regulation at specific loci. Comparative functional analysis of the signaling network links strain-specificities to the regulation of the pan-genome, including the two specific hypervirulent adhesins and horizontally acquired genes, to mutations in CovR-regulated promoters, and to variability in CovR activation by phosphorylation. This regulatory adaptation occurs at the level of genes, promoters, and of CovR itself, and allows to globally reshape the expression of virulence genes. Overall, our results reveal the direct, coordinated, and strain-specific regulation of virulence genes by the master regulator CovR and suggest that the intra-species evolution of the signaling network is as important as the expression of specific virulence factors in the emergence of clone associated with specific diseases. Streptococcus agalactiae, commonly known as the Group B Streptococcus (GBS), is a commensal bacterium of the intestinal and vaginal tracts found in approximately 30% of healthy adults. However, GBS is also an opportunistic pathogen and the leading cause of neonatal invasive infections. Epidemiologic data have identified a particular GBS clone, designated the CC-17 hypervirulent clonal complex, as responsible for the overwhelming majority of neonatal meningitis. The hypervirulence of CC-17 has been linked to the expression of two specific surface proteins increasing their abilities to cross epithelial and endothelial barriers. In this study, we characterized the role of the major regulator of virulence gene expression, the CovR response regulator, in a representative hypervirulent strain. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR signaling network characterized by the direct repression of a large array of virulence-associated genes, including the specific hypervirulent adhesins. Comparative analysis in a non-CC-17 wild type strain demonstrates a high level of plasticity of the regulatory network, allowing to globally reshape pathogen-host interaction. Overall, our results suggest that the intra-species evolution of the regulatory network is an important factor in the emergence of GBS clones associated with specific pathologies.
Collapse
Affiliation(s)
- Maria-Vittoria Mazzuoli
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Maëlle Daunesse
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Odile Sismeiro
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Myriam Gominet
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Pierre Alexandre Kaminski
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Philippe Glaser
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Claudia Chica
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Patrick Trieu-Cuot
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Arnaud Firon
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|