1
|
Cailleau G, Hanson BT, Cravero M, Zhioua S, Hilpish P, Ruiz C, Robinson AJ, Kelliher JM, Morales D, Gallegos-Graves LV, Bonito G, Chain PS, Bindschedler S, Junier P. Associated bacterial communities, confrontation studies, and comparative genomics reveal important interactions between Morchella with Pseudomonas spp. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1285531. [PMID: 38155707 PMCID: PMC10753826 DOI: 10.3389/ffunb.2023.1285531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/08/2023] [Indexed: 12/30/2023]
Abstract
Members of the fungal genus Morchella are widely known for their important ecological roles and significant economic value. In this study, we used amplicon and genome sequencing to characterize bacterial communities associated with sexual fruiting bodies from wild specimens, as well as vegetative mycelium and sclerotia obtained from Morchella isolates grown in vitro. These investigations included diverse representatives from both Elata and Esculenta Morchella clades. Unique bacterial community compositions were observed across the various structures examined, both within and across individual Morchella isolates or specimens. However, specific bacterial taxa were frequently detected in association with certain structures, providing support for an associated core bacterial community. Bacteria from the genus Pseudomonas and Ralstonia constituted the core bacterial associates of Morchella mycelia and sclerotia, while other genera (e.g., Pedobacter spp., Deviosa spp., and Bradyrhizobium spp.) constituted the core bacterial community of fruiting bodies. Furthermore, the importance of Pseudomonas as a key member of the bacteriome was supported by the isolation of several Pseudomonas strains from mycelia during in vitro cultivation. Four of the six mycelial-derived Pseudomonas isolates shared 16S rDNA sequence identity with amplicon sequences recovered directly from the examined fungal structures. Distinct interaction phenotypes (antagonistic or neutral) were observed in confrontation assays between these bacteria and various Morchella isolates. Genome sequences obtained from these Pseudomonas isolates revealed intriguing differences in gene content and annotated functions, specifically with respect to toxin-antitoxin systems, cell adhesion, chitinases, and insecticidal toxins. These genetic differences correlated with the interaction phenotypes. This study provides evidence that Pseudomonas spp. are frequently associated with Morchella and these associations may greatly impact fungal physiology.
Collapse
Affiliation(s)
- Guillaume Cailleau
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Buck T. Hanson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Melissa Cravero
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sami Zhioua
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Patrick Hilpish
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Celia Ruiz
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Aaron J. Robinson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Julia M. Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Demosthenes Morales
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Patrick S.G. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
2
|
Villar-Moreno R, Tienda S, Gutiérrez-Barranquero JA, Carrión VJ, de Vicente A, Cazorla FM, Arrebola E. Interplay between rhizospheric Pseudomonas chlororaphis strains lays the basis for beneficial bacterial consortia. FRONTIERS IN PLANT SCIENCE 2022; 13:1063182. [PMID: 36589057 PMCID: PMC9797978 DOI: 10.3389/fpls.2022.1063182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Pseudomonas chlororaphis (Pc) representatives are found as part of the rhizosphere-associated microbiome, and different rhizospheric Pc strains frequently perform beneficial activities for the plant. In this study we described the interactions between the rhizospheric Pc strains PCL1601, PCL1606 and PCL1607 with a focus on their effects on root performance. Differences among the three rhizospheric Pc strains selected were first observed in phylogenetic studies and confirmed by genome analysis, which showed variation in the presence of genes related to antifungal compounds or siderophore production, among others. Observation of the interactions among these strains under lab conditions revealed that PCL1606 has a better adaptation to environments rich in nutrients, and forms biofilms. Interaction experiments on plant roots confirmed the role of the different phenotypes in their lifestyle. The PCL1606 strain was the best adapted to the habitat of avocado roots, and PCL1607 was the least, and disappeared from the plant root scenario after a few days of interaction. These results confirm that 2 out 3 rhizospheric Pc strains were fully compatible (PCL1601 and PCL1606), efficiently colonizing avocado roots and showing biocontrol activity against the fungal pathogen Rosellinia necatrix. The third strain (PCL1607) has colonizing abilities when it is alone on the root but displayed difficulties under the competition scenario, and did not cause deleterious effects on the other Pc competitors when they were present. These results suggest that strains PCL1601 and PCL1606 are very well adapted to the avocado root environment and could constitute a basis for constructing a more complex beneficial microbial synthetic community associated with avocado plant roots.
Collapse
Affiliation(s)
- Rafael Villar-Moreno
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Sandra Tienda
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Jose A. Gutiérrez-Barranquero
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Víctor J. Carrión
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Antonio de Vicente
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Francisco M. Cazorla
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Eva Arrebola
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| |
Collapse
|