1
|
Brownlee C, Langer G, Wheeler GL. Coccolithophore calcification: Changing paradigms in changing oceans. Acta Biomater 2021; 120:4-11. [PMID: 32763469 DOI: 10.1016/j.actbio.2020.07.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/13/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022]
Abstract
Coccolithophores represent a major component of the marine phytoplankton and contribute to the bulk of biogenic calcite formation on Earth. These unicellular protists produce minute calcite scales (coccoliths) within the cell, which are secreted to the cell surface. Individual coccoliths and their arrangements on the cell surface display a wide range of morphological variations. This review explores some of the recent evidence that points to similarities and differences in the mechanisms of calcification, focussing on the transport mechanisms that bring substrates to, and remove products from the site of calcification, together with new findings on factors that regulate coccolith morphology. We argue that better knowledge of these mechanisms and their variations is needed to inform more generally how different species of coccolithophore are likely to respond to changes in ocean chemistry. STATEMENT OF SIGNIFICANCE: Coccolithophores, minute single celled phytoplankton are the major producers of biogenic carbonate on Earth. They also represent an important component of the ocean's biota and contribute significantly to global carbon fluxes. Coccolithophores produce intricate calcite scales (coccoliths) internally that they secrete onto their external surface. This review presents some recent key findings on the mechanisms underlying the production of coccoliths. It also considers the factors that regulate the rate of production as well as the variety of shapes of individual coccoliths and their arrangements at the cell surface. Understanding these processes is needed to allow better predictions of how coccolithophores may respond to changing ocean chemistry associated with climate change.
Collapse
Affiliation(s)
- Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton SO14 3ZH, UK.
| | - Gerald Langer
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
2
|
Sakurada S, Fujiwara S, Suzuki M, Kogure T, Uchida T, Umemura T, Tsuzuki M. Involvement of Acidic Polysaccharide Ph-PS-2 and Protein in Initiation of Coccolith Mineralization, as Demonstrated by In Vitro Calcification on the Base Plate. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:304-312. [PMID: 29619589 DOI: 10.1007/s10126-018-9818-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 09/20/2017] [Indexed: 06/08/2023]
Abstract
Coccolithophorids, unicellular marine microalgae, have calcified scales with elaborate structures, called coccoliths, on the cell surface. Coccoliths generally comprise a base plate, CaCO3, and a crystal coat consisting of acidic polysaccharides. In this study, the in vitro calcification conditions on the base plate of Pleurochrysis haptonemofera were examined to determine the functions of the base plate and acidic polysaccharides (Ph-PS-1, -2, and -3). When EDTA-treated coccoliths (acidic polysaccharide-free base plates) or low pH-treated coccoliths (whole acidic polysaccharide-containing base plates) were used, mineralization was not detected on the base plate. In contrast, in the case of coccoliths which were decalcified by lowering of the pH and then treated with urea (Ph-PS-2-containing base plates), distinct aggregates, probably containing CaCO3, were observed only on the rim of the base plates. Energy dispersive X-ray spectroscopy (EDS) confirmed that the aggregates contained Ca and O, although X-ray diffraction analysis did not reveal any evidence of crystalline materials. Also, in vitro mineralization experiments performed on EDTA-treated coccoliths using isolated acidic polysaccharides demonstrated that the Ca-containing aggregates were markedly formed only in the presence of Ph-PS-2. Furthermore, in vitro mineralization experiments conducted on protein-extracted base plates suggested that the coccolith-associated protein(s) are involved in the Ca deposition. These findings suggest that Ph-PS-2 associated with the protein(s) on the base plate rim initiates Ca2+ binding at the beginning of coccolith formation, and some other factors are required for subsequent calcite formation.
Collapse
Affiliation(s)
- Shunto Sakurada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Toshihiro Kogure
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuya Uchida
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tomonari Umemura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Mikio Tsuzuki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
3
|
Taylor AR, Brownlee C, Wheeler G. Coccolithophore Cell Biology: Chalking Up Progress. ANNUAL REVIEW OF MARINE SCIENCE 2017; 9:283-310. [PMID: 27814031 DOI: 10.1146/annurev-marine-122414-034032] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coccolithophores occupy a special position within the marine phytoplankton because of their production of intricate calcite scales, or coccoliths. Coccolithophores are major contributors to global ocean calcification and long-term carbon fluxes. The intracellular production of coccoliths requires modifications to cellular ultrastructure and metabolism that are surveyed here. In addition to calcification, which appears to have evolved with a diverse range of functions, several other remarkable features that likely underpin the ecological and evolutionary success of coccolithophores have recently been uncovered. These include complex and varied life cycle strategies related to abiotic and biotic interactions as well as a range of novel metabolic pathways and nutritional strategies. Together with knowledge of coccolithophore genetic and physiological variability, these findings are beginning to shed new light on species diversity, distribution, and ecological adaptation. Further advances in genetics and functional characterization at the cellular level will likely to lead to a rapid increase in this understanding.
Collapse
Affiliation(s)
- Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403;
| | - Colin Brownlee
- Marine Biological Association, Plymouth PL1 2PB, United Kingdom; ,
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, United Kingdom
| | - Glen Wheeler
- Marine Biological Association, Plymouth PL1 2PB, United Kingdom; ,
| |
Collapse
|
4
|
Gal A, Wirth R, Kopka J, Fratzl P, Faivre D, Scheffel A. Macromolecular recognition directs calcium ions to coccolith mineralization sites. Science 2016; 353:590-3. [DOI: 10.1126/science.aaf7889] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/14/2016] [Indexed: 01/16/2023]
|
5
|
Yamamoto N, Kudo T, Fujiwara S, Takatsuka Y, Hirokawa Y, Tsuzuki M, Takano T, Kobayashi M, Suda K, Asamizu E, Yokoyama K, Shibata D, Tabata S, Yano K. Pleurochrysome: A Web Database of Pleurochrysis Transcripts and Orthologs Among Heterogeneous Algae. PLANT & CELL PHYSIOLOGY 2016; 57:e6. [PMID: 26746174 PMCID: PMC4722176 DOI: 10.1093/pcp/pcv195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/27/2015] [Indexed: 05/04/2023]
Abstract
Pleurochrysis is a coccolithophorid genus, which belongs to the Coccolithales in the Haptophyta. The genus has been used extensively for biological research, together with Emiliania in the Isochrysidales, to understand distinctive features between the two coccolithophorid-including orders. However, molecular biological research on Pleurochrysis such as elucidation of the molecular mechanism behind coccolith formation has not made great progress at least in part because of lack of comprehensive gene information. To provide such information to the research community, we built an open web database, the Pleurochrysome (http://bioinf.mind.meiji.ac.jp/phapt/), which currently stores 9,023 unique gene sequences (designated as UNIGENEs) assembled from expressed sequence tag sequences of P. haptonemofera as core information. The UNIGENEs were annotated with gene sequences sharing significant homology, conserved domains, Gene Ontology, KEGG Orthology, predicted subcellular localization, open reading frames and orthologous relationship with genes of 10 other algal species, a cyanobacterium and the yeast Saccharomyces cerevisiae. This sequence and annotation information can be easily accessed via several search functions. Besides fundamental functions such as BLAST and keyword searches, this database also offers search functions to explore orthologous genes in the 12 organisms and to seek novel genes. The Pleurochrysome will promote molecular biological and phylogenetic research on coccolithophorids and other haptophytes by helping scientists mine data from the primary transcriptome of P. haptonemofera.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan These authors contributed equally to this work. Present address: International Rice Research Institute, DAPO 7777, Metro Manila 1301, Philippines.
| | - Toru Kudo
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan These authors contributed equally to this work.
| | - Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392 Japan, CREST, Japan These authors contributed equally to this work.
| | - Yukiko Takatsuka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392 Japan, CREST, Japan
| | - Yasutaka Hirokawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392 Japan, CREST, Japan
| | - Mikio Tsuzuki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392 Japan, CREST, Japan
| | - Tomoyuki Takano
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Masaaki Kobayashi
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Kunihiro Suda
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Erika Asamizu
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Koji Yokoyama
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Kentaro Yano
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| |
Collapse
|
6
|
|
7
|
|
8
|
Hirokawa Y, Matsuzuka S, Itayama S, Uchida T, Fujiwara S, Ozaki N, Nagasawa H, Tsuzuki M. Localization and Associative Strength of Acid Polysaccharides in Coccoliths of <i>Pleurochrysis haptonemofera</i> (Haptophyta) Predicted from Their Extractability from Partially Decalcified Coccoliths. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojms.2013.31005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Drescher B, Dillaman RM, Taylor AR. Coccolithogenesis In Scyphosphaera apsteinii (Prymnesiophyceae). JOURNAL OF PHYCOLOGY 2012; 48:1343-61. [PMID: 27009987 DOI: 10.1111/j.1529-8817.2012.01227.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 05/06/2012] [Indexed: 05/24/2023]
Abstract
Coccolithophores are the most significant producers of marine biogenic calcite, although the intracellular calcification process is poorly understood. In the case of Scyphosphaera apsteinii Lohmann 1902, flat ovoid muroliths and bulky, vase-shaped lopadoliths with a range of intermediate morphologies may be produced by a single cell. This polymorphic species is within the Zygodiscales, a group that remains understudied with respect to ultrastructure and coccolith ontogeny. We therefore undertook an analysis of cell ultrastructure, morphology, and coccolithogenesis. The cell ultrastructure showed many typical haptophyte features, with calcification following a similar pattern to that described for other heterococcolith bearing species including Emiliania huxleyi. Of particular significance was the reticular body role in governing fine-scale morphology, specifically the central pore formation of the coccolith. Our observations also highlighted the essential role of the inter- and intracrystalline organic matrix in growth and arrangement of the coccolith calcite. S. apsteinii secreted mature coccoliths that attached to the plasma membrane via fibrillar material. Time-lapse light microscopy demonstrated secretion of lopadoliths occurred base first before being actively repositioned at the cell surface. Significantly, growth irradiance influenced the coccosphere composition with fewer lopadoliths being formed relative to muroliths at higher light intensities. Overall, our observations support dynamic metabolic (i.e., in response to growth irradiance), sensory and cytoskeletal control over the morphology and secretion of polymorphic heterococcoliths. With a basic understanding of calcification established, S. apsteinii could be a valuable model to further study coccolithophore calcification and cell physiological responses to ocean acidification.
Collapse
Affiliation(s)
- Brandon Drescher
- Biology Department, University of North Carolina Wilmington, 601 S. College Road, Wilmington, North Carolina, 28403, USA
| | - Richard M Dillaman
- Biology Department, University of North Carolina Wilmington, 601 S. College Road, Wilmington, North Carolina, 28403, USA
| | - Alison R Taylor
- Biology Department, University of North Carolina Wilmington, 601 S. College Road, Wilmington, North Carolina, 28403, USA
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
10
|
Katagiri F, Takatsuka Y, Fujiwara S, Tsuzuki M. Effects of Ca and Mg on growth and calcification of the coccolithophorid Pleurochrysis haptonemofera: Ca requirement for cell division in coccolith-bearing cells and for normal coccolith formation with acidic polysaccharides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:42-51. [PMID: 19444518 DOI: 10.1007/s10126-009-9198-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 05/02/2009] [Indexed: 05/27/2023]
Abstract
The effects of Ca2+ and Mg2+ on cellular growth and calcification in Pleurochrysis haptonemofera were investigated. In the presence of a normal concentration of Mg2+, coccolith-bearing cells (C-cells) required more than 0.5 mM Ca2+ for growth, while naked cells could grow even with 0.5 mM Ca2+. The calcification rate of C-cells, which was determined using decalcified cells, was significantly repressed with less than or equal to 0.5 mM Ca2+. Although the calcification rate did not change so much with 5-30 mM Ca2+, it decreased with higher concentrations of Ca2+, as well as C-cell-specific growth repression. Under these conditions, Ca2+ affected the rate of coccolith formation, but neither the coccolith morphology nor total amounts and ratios of divalent cations and acidic polysaccharides (Ph-PS-1, -2, and -3) were included in coccoliths. These findings suggest that sufficient calcification is required for the division of C-cells. Under low Ca2+ and high Mg2+ conditions, coccoliths with an abnormal morphology, having immature shield elements, were synthesized. Composition analysis of the coccoliths revealed high Mg/Ca and low Ph-PS-2/(Ph-PS-1 and -3) ratios, as compared with those under low Ca2+ and normal Mg2+ conditions, suggesting that the abnormal morphology is due to a change in the crystal type and/or acidic polysaccharide composition.
Collapse
Affiliation(s)
- Fumio Katagiri
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | |
Collapse
|
11
|
Kayano K, Shiraiwa Y. Physiological regulation of coccolith polysaccharide production by phosphate availability in the coccolithophorid Emiliania huxleyi. PLANT & CELL PHYSIOLOGY 2009; 50:1522-1531. [PMID: 19587028 DOI: 10.1093/pcp/pcp097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Coccoliths of the coccolithophorid Emiliania huxleyi are calcified biomineral scales composed of calcium carbonate and coccolith polysaccharide (CPs). Coccolith production is regulated by inorganic phosphate (P(i)) availability, but no information currently exists on how this process occurs. In this study CP was experimentally characterized by HPLC analysis as an acid polysaccharide of mannose, galacturonic acid, xylose and rhamnose. Both calcification (estimated from 45Ca uptake) and CP production (estimated from uronic acid quantification) were stimulated under P(i)-deficient conditions but strongly suppressed under P(i)-sufficient conditions. When cells were transferred from P(i)-sufficient to P(i)-deficient conditions the production of neutral polysaccharides (NP)--storage glucans--ceased rapidly after a temporary increase in the presence of P(i), and CP production started to increase after P(i) was almost depleted. Under P(i)-sufficient conditions NP production increased, concomitant with stimulation of cell growth. Calcification increased gradually, but photosynthetic 14CO2 fixation was reduced by almost 40% for 5 d of culture during P(i) depletion. [14C]CP production was maintained at almost constant, high levels under P(i)-deficient conditions but gradually decreased under P(i)-sufficient conditions in conjunction with cell growth. In contrast, [14C]NP production increased about 3-fold under P(i)-sufficient conditions for 3 d. The present study indicates that E. huxleyi switches the direction of carbon flow toward CP and NP production under P(i)-deficient and P(i)-sufficient conditions, respectively.
Collapse
Affiliation(s)
- Keisuke Kayano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | |
Collapse
|
12
|
Godoi R, Aerts K, Harlay J, Kaegi R, Ro CU, Chou L, Van Grieken R. Organic surface coating on Coccolithophores - Emiliania huxleyi: Its determination and implication in the marine carbon cycle. Microchem J 2009. [DOI: 10.1016/j.microc.2008.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Hirokawa Y, Fujiwara S, Suzuki M, Akiyama T, Sakamoto M, Kobayashi S, Tsuzuki M. Structural and physiological studies on the storage beta-polyglucan of haptophyte Pleurochrysis haptonemofera. PLANTA 2008; 227:589-599. [PMID: 17940796 DOI: 10.1007/s00425-007-0641-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 09/28/2007] [Indexed: 05/25/2023]
Abstract
The storage beta-polyglucan and catabolic enzyme activities of the haptophyte Pleurochrysis haptonemofera were characterized. The storage beta-polyglucan was prepared by the dimethylsulfoxide-extraction method. (13)C- and (1)H-NMR spectroscopy revealed that the polyglucan consists of beta-(1-->3)- and beta-(1-->6)-linked glucose polymers, with a beta-(1-->6)- to beta-(1-->3)-linkage ratio of 1.5. Gel permeation chromatography showed that the molecular weight of the polyglucan is 1.1-8.4 x 10(4) Da, with a peak at 3.4 x 10(4) Da. The degree of polymerization, which was estimated from the amounts of total carbohydrate and reduced ends, was 203, corresponding to 3.3 x 10(4) Da. A method for measurement of the beta-polyglucan in a small amount of liquid culture involving a mixture of beta-glucanases, Westase, was established. The beta-polyglucan was localized in the soluble fraction of cells. The amount of beta-polyglucan per cell increased at the stationary phase under continuous illumination and decreased in the dark, like those of storage alpha-polyglucans, starch of green algae and glycogen of cyanobacteria. The activities of beta-1,3- and beta-1,6-glucanases involved in the degradation of the storage beta-polyglucan were assayed in vitro, both being optimal at pH 5.0. The beta-1,3-glucanase activity, which was detected on active staining after native polyacrylamide gel electrophoresis, was partially purified by ammonium sulfate precipitation and anion exchange chromatography.
Collapse
Affiliation(s)
- Yasutaka Hirokawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Fujiwara S, Hirokawa Y, Takatsuka Y, Suda K, Asamizu E, Takayanagi T, Shibata D, Tabata S, Tsuzuki M. Gene expression profiling of coccolith-bearing cells and naked cells in haptophyte Pleurochrysis haptonemofera with a cDNA macroarray system. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:550-60. [PMID: 17659451 DOI: 10.1007/s10126-007-9039-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 03/05/2007] [Indexed: 05/16/2023]
Abstract
Pleurochrysis haptonemofera is a unicellular marine coccolithophorid that has calcified scales, coccoliths, on the cell surface. Some coccolithophorids including P. haptonemofera have a coccolith-bearing stage and a naked stage in their life cycles. To characterize genes involved in the coccolithogenesis, we generated a total of 9550 expressed sequence tags (EST) from a normalized cDNA library that was prepared using both coccolith-bearing cells (C-cells) and naked cells (N-cells), constructed a cDNA macroarray using the EST clones, and then analyzed the gene expression specificity in C-cells and N-cells. When cDNA clones whose expression ratio exceeded 3-fold were selected, as many as 180 clones were identified as C-cell-specific ones, while only 12 were found to be N-cell-specific ones. These clones were sequenced, assembled, and homology-searched against a public nonredundant protein database. As a result, they were grouped into 54 C-cell-specific and 6 N-cell-specific genes, and 59% and 50% of these genes exhibited significant similarity to those of other known proteins, respectively. To assess mRNA expression further, Northern hybridization was performed for 12 of the C-cell-specific genes and one of the N-cell-specific ones. These clones, together with the new cDNA macroarray, will provide a powerful tool for the future genome-wide functional analysis of uncharacterized genes related to the regulation of the calcification and life cycle of coccolithophorids.
Collapse
Affiliation(s)
- Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ozaki N, Sakuda S, Nagasawa H. A novel highly acidic polysaccharide with inhibitory activity on calcification from the calcified scale “coccolith” of a coccolithophorid alga, Pleurochrysis haptonemofera. Biochem Biophys Res Commun 2007; 357:1172-6. [PMID: 17462599 DOI: 10.1016/j.bbrc.2007.04.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 04/13/2007] [Indexed: 11/27/2022]
Abstract
Coccolith, a calcified scale with species-specific fine structure produced by marine unicellular coccolithophorid algae, consists of calcium carbonate (CaCO(3)) crystals and a small amount of organic matrices. A novel polysaccharide named coccolith matrix acidic polysaccharide (CMAP) was isolated from the coccolith of a coccolithophorid alga, Pleurochrysis haptonemofera. The structure of CMAP was determined by chemical analysis and NMR spectroscopy including COSY, TOCSY, HMQC, and HMBC to be a polysaccharide composed of the following unit: -->4) l-iduronic acid (alpha1-->2) meso-tartaric acid (3-->1) glyoxylic acid (1-->. It has four carboxyl groups per a disaccharide unit as observed in another polysaccharide PS-2 characterized previously in Pleurochrysis carterae. CMAP showed a strong inhibitory activity on CaCO(3) precipitation. These results suggest that CMAP serves as a regulator in the calcification of the coccolith.
Collapse
Affiliation(s)
- Noriaki Ozaki
- Department of Functional Bioscience, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | |
Collapse
|
16
|
Takayanagi T, Hirokawa Y, Yamamoto M, Ohki T, Fujiwara S, Tsuzuki M. Protoplast formation of the coccolithophorid Pleurochrysis haptonemofera in hypoosmotic K+ solution: shedding of the coccosphere and regrowth of the protoplast in normal medium. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:56-65. [PMID: 17131046 DOI: 10.1007/s10126-006-6058-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 07/03/2006] [Indexed: 05/12/2023]
Abstract
Both coccolith-bearing cells (C-cells) and naked cells (N-cells) of the coccolithophorid Pleurochrysis haptonemofera can grow in salinities of more than 7 per thousand (about 20% of a "normal" sea water salinity [35 per thousand]), with the highest growth rates in salinities of more than 14 per thousand. Microscopic observations of cells suspended in 100 mM NaCl (7 per thousand) showed that, while N-cells were swelling uniformly all over the cell surface, C-cells were bulging the plasma membrane from the hole of the coccosphere at the apical (flagellar) pole of the cell. Effects of several cations and anions on the morphological change of C-cells under hypoosmotic pressure were investigated. When 100 mM K(+) was used, protoplasts were released from the coccosphere completely in almost all the cells. This phenomenon was shown with K(+) most effectively. The protoplasts could grow in the fresh medium and form the first coccolith within 9 h.
Collapse
Affiliation(s)
- Takatoshi Takayanagi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | |
Collapse
|