1
|
Wenne R. Microsatellites as Molecular Markers with Applications in Exploitation and Conservation of Aquatic Animal Populations. Genes (Basel) 2023; 14:genes14040808. [PMID: 37107566 PMCID: PMC10138012 DOI: 10.3390/genes14040808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
A large number of species and taxa has been studied for genetic polymorphism. Microsatellites have been known as hypervariable neutral molecular markers with the highest resolution power in comparison with any other markers. However, the discovery of a new type of molecular marker—single nucleotide polymorphism (SNP) has put the existing applications of microsatellites to the test. To ensure good resolution power in studies of populations and individuals, a number of microsatellite loci from 14 to 20 was often used, which corresponds to about 200 independent alleles. Recently, these numbers have tended to be increased by the application of genomic sequencing of expressed sequence tags (ESTs), and the choice of the most informative loci for genotyping depends on the aims of research. Examples of successful applications of microsatellite molecular markers in aquaculture, fisheries, and conservation genetics in comparison with SNPs have been summarized in this review. Microsatellites can be considered superior markers in such topics as kinship and parentage analysis in cultured and natural populations, the assessment of gynogenesis, androgenesis and ploidization. Microsatellites can be coupled with SNPs for mapping QTL. Microsatellites will continue to be used in research on genetic diversity in cultured stocks, and also in natural populations as an economically advantageous genotyping technique.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
2
|
Holbrook Z, Bean TP, Lynch SA, Hauton C. What do the terms resistance, tolerance, and resilience mean in the case of Ostrea edulis infected by the haplosporidian parasite Bonamia ostreae. J Invertebr Pathol 2021; 182:107579. [PMID: 33811850 DOI: 10.1016/j.jip.2021.107579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
The decline of the European flat oyster Ostrea edulis represents a loss to European coastal economies both in terms of food security and by affecting the Good Environmental Status of the marine environment as set out by the European Council's Marine Strategy Framework Directive (2008/56/EC). Restoration of O. edulis habitat is being widely discussed across Europe, addressing key challenges such as the devastating impact of the haplosporidian parasite Bonamia ostreae. The use of resistant, tolerant, or resilient oysters as restoration broodstock has been proposed by restoration practitioners, but the definitions and implications of these superficially familiar terms have yet to be defined and agreed by all stakeholders. This opinion piece considers the challenges of differentiating Bonamia resistance, tolerance, and resilience; challenges which impede the adoption of robust definitions. We argue that, disease-resistance is reduced susceptibility to infection by the parasite, or active suppression of the parasites ability to multiply and proliferate. Disease-tolerance is the retention of fitness and an ability to neutralise the virulence of the parasite. Disease-resilience is the ability to recover from illness and, at population level, tolerance could be interpreted as resilience. We concede that further work is required to resolve practical uncertainty in applying these definitions, and argue for a collaboration of experts to achieve consensus. Failure to act now might result in the future dispersal of this disease into new locations and populations, because robust definitions are important components of regulatory mechanisms that underpin marine management.
Collapse
Affiliation(s)
- Zoë Holbrook
- Ocean and Earth Science, University of Southampton Waterfront Campus, National Oceanography Centre Southampton, UK
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Sharon A Lynch
- School of Biological, Earth and Environmental Sciences, Aquaculture and Fisheries Development Centre, and Environmental Research Institute, University College Cork, Ireland
| | - Chris Hauton
- Ocean and Earth Science, University of Southampton Waterfront Campus, National Oceanography Centre Southampton, UK.
| |
Collapse
|
3
|
Vera M, Pardo BG, Cao A, Vilas R, Fernández C, Blanco A, Gutierrez AP, Bean TP, Houston RD, Villalba A, Martínez P. Signatures of selection for bonamiosis resistance in European flat oyster ( Ostrea edulis): New genomic tools for breeding programs and management of natural resources. Evol Appl 2019; 12:1781-1796. [PMID: 31548857 PMCID: PMC6752124 DOI: 10.1111/eva.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/18/2019] [Accepted: 06/09/2019] [Indexed: 12/18/2022] Open
Abstract
The European flat oyster (Ostrea edulis) is a highly appreciated mollusk with an important aquaculture production throughout the 20th century, in addition to playing an important role on coastal ecosystems. Overexploitation of natural beds, habitat degradation, introduction of non-native species, and epidemic outbreaks have severely affected this important resource, particularly, the protozoan parasite Bonamia ostreae, which is the main concern affecting its production and conservation. In order to identify genomic regions and markers potentially associated with bonamiosis resistance, six oyster beds distributed throughout the European Atlantic coast were sampled. Three of them have been exposed to this parasite since the early 1980s and showed some degree of innate resistance (long-term affected group, LTA), while the other three were free of B. ostreae at least until sampling date (naïve group, NV). A total of 14,065 SNPs were analyzed, including 37 markers from candidate genes and 14,028 from a medium-density SNP array. Gene diversity was similar between LTA and NV groups suggesting no genetic erosion due to long-term exposure to the parasite, and three population clusters were detected using the whole dataset. Tests for divergent selection between NV and LTA groups detected the presence of a very consistent set of 22 markers, located within a putative single genomic region, which suggests the presence of a major quantitative trait locus associated with B. ostreae resistance. Moreover, 324 outlier loci associated with factors other than bonamiosis were identified allowing fully discrimination of all the oyster beds. A practical tool which included the 84 highest discriminative markers for tracing O. edulis populations was developed and tested with empirical data. Results reported herein could assist the production of stocks with improved resistance to bonamiosis and facilitate the management of oyster beds for recovery production and ecosystem services provided by this species.
Collapse
Affiliation(s)
- Manuel Vera
- Department of Zoology, Genetics and Physical Anthropology, ACUIGEN group, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
- Instituto de AcuiculturaUniversidade de Santiago de CompostelaLugoSpain
| | - Belén G. Pardo
- Department of Zoology, Genetics and Physical Anthropology, ACUIGEN group, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
- Instituto de AcuiculturaUniversidade de Santiago de CompostelaLugoSpain
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA)Consellería do Mar, Xunta de GaliciaPontevedraSpain
| | - Román Vilas
- Department of Zoology, Genetics and Physical Anthropology, ACUIGEN group, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
- Instituto de AcuiculturaUniversidade de Santiago de CompostelaLugoSpain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, ACUIGEN group, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
- Instituto de AcuiculturaUniversidade de Santiago de CompostelaLugoSpain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, ACUIGEN group, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
- Instituto de AcuiculturaUniversidade de Santiago de CompostelaLugoSpain
| | - Alejandro P. Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA)Consellería do Mar, Xunta de GaliciaPontevedraSpain
- Departamento de Ciencias de la VidaUniversidad de AlcaláMadridSpain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE)University of the Basque Country (UPV/EHU)Basque CountrySpain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, ACUIGEN group, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
- Instituto de AcuiculturaUniversidade de Santiago de CompostelaLugoSpain
| |
Collapse
|
4
|
Meng J, Song K, Li C, Liu S, Shi R, Li B, Wang T, Li A, Que H, Li L, Zhang G. Genome-wide association analysis of nutrient traits in the oyster Crassostrea gigas: genetic effect and interaction network. BMC Genomics 2019; 20:625. [PMID: 31366319 PMCID: PMC6670154 DOI: 10.1186/s12864-019-5971-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background Oyster is rich in glycogen and free amino acids and is called “the milk of sea”. To understand the main genetic effects of these traits and the genetic networks underlying their correlation, we have conducted the whole genome resequencing with 427 oysters collected from the world-wide scale. Results After association analysis, 168 clustered significant single nucleotide polymorphism (SNP) loci were identified for glycogen content and 17 SNPs were verified with 288 oyster individuals in another wide populations. These were the most important candidate loci for oyster breeding. Among 24 genes in the 100-kb regions of the leading SNP loci, cytochrome P450 17A1 (CYP17A1) contained a non-synonymous SNP and displayed higher expressions in high glycogen content individuals. This might enhance the gluconeogenesis process by the transcriptionally regulating the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase). Also, for amino acids content, 417 clustered significant SNPs were identified. After genetic network analysis, three node SNP regions were identified to be associated with glycogen, protein, and Asp content, which might explain their significant correlation. Conclusion Overall, this study provides insights into the genetic correlation among complex traits, which will facilitate future oyster functional studies and breeding through molecular design. Electronic supplementary material The online version of this article (10.1186/s12864-019-5971-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chunyan Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Sheng Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ruihui Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Busu Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ting Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huayong Que
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China. .,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
5
|
Helmer L, Farrell P, Hendy I, Harding S, Robertson M, Preston J. Active management is required to turn the tide for depleted Ostrea edulis stocks from the effects of overfishing, disease and invasive species. PeerJ 2019; 7:e6431. [PMID: 30842897 PMCID: PMC6397756 DOI: 10.7717/peerj.6431] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/10/2019] [Indexed: 11/23/2022] Open
Abstract
The decline of the European oyster Ostrea edulis across its biogeographic range has been driven largely by over-fishing and anthropogenic habitat destruction, often to the point of functional extinction. However, other negatively interacting factors attributing to this catastrophic decline include disease, invasive species and pollution. In addition, a relatively complex life history characterized by sporadic spawning renders O. edulis biologically vulnerable to overexploitation. As a viviparous species, successful reproduction in O. edulis populations is density dependent to a greater degree than broadcast spawning oviparous species such as the Pacific oyster Crassostrea (Magallana) gigas. Here, we report on the benthic assemblage of O. edulis and the invasive gastropod Crepidula fornicata across three actively managed South coast harbors in one of the few remaining O. edulis fisheries in the UK. Long-term data reveals that numbers of O. edulis sampled within Chichester Harbour have decreased by 96%, in contrast numbers of C. fornicata sampled have increased by 441% over a 19-year period. The recent survey data also recorded extremely low densities of O. edulis, and extremely high densities of C. fornicata, within Portsmouth and Langstone Harbours. The native oyster’s failure to recover, despite fishery closures, suggests competitive exclusion by C. fornicata is preventing recovery of O. edulis, which is thought to be due to a lack of habitat heterogeneity or suitable settlement substrate. Large scale population data reveals that mean O. edulis shell length and width has decreased significantly across all years and site groups from 2015 to 2017, with a narrowing demographic structure. An absence of juveniles and lack of multiple cohorts in the remaining population suggests that the limited fishing effort exceeds biological output and recruitment is poor. In the Langstone & Chichester 2017 sample 98% of the population is assigned to a single cohort (modal mean 71.20 ± 8.78 mm, maximum length). There is evidence of small scale (<5 km) geographic population structure between connected harbors; the 2015 Portsmouth and Chichester fishery populations exhibited disparity in the most frequent size class with 36% within 81–90 mm and 33.86% within 61–70 mm, respectively, the data also indicates a narrowing demographic over a short period of time. The prevalence of the disease Bonamiosis was monitored and supports this microgeographic population structure. Infection rates of O. edulis by Bonamia ostreae was 0% in Portsmouth Harbor (n = 48), 4.1% in Langstone (n = 145) and 21.3% in Chichester (n = 48) populations. These data collectively indicate that O. edulis is on the brink of an ecological collapse within the Solent harbors. Without effective intervention to mitigate the benthic dominance by C. fornicata in the form of biologically relevant fishery policy and the management of suitable recruitment substrate these native oyster populations could be lost.
Collapse
Affiliation(s)
- Luke Helmer
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| | - Paul Farrell
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| | - Ian Hendy
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire, UK.,Blue Marine Foundation, London, UK
| | | | | | - Joanne Preston
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| |
Collapse
|
6
|
Zenger KR, Khatkar MS, Jones DB, Khalilisamani N, Jerry DR, Raadsma HW. Genomic Selection in Aquaculture: Application, Limitations and Opportunities With Special Reference to Marine Shrimp and Pearl Oysters. Front Genet 2019; 9:693. [PMID: 30728827 PMCID: PMC6351666 DOI: 10.3389/fgene.2018.00693] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
Within aquaculture industries, selection based on genomic information (genomic selection) has the profound potential to change genetic improvement programs and production systems. Genomic selection exploits the use of realized genomic relationships among individuals and information from genome-wide markers in close linkage disequilibrium with genes of biological and economic importance. We discuss the technical advances, practical requirements, and commercial applications that have made genomic selection feasible in a range of aquaculture industries, with a particular focus on molluscs (pearl oysters, Pinctada maxima) and marine shrimp (Litopenaeus vannamei and Penaeus monodon). The use of low-cost genome sequencing has enabled cost-effective genotyping on a large scale and is of particular value for species without a reference genome or access to commercial genotyping arrays. We highlight the pitfalls and offer the solutions to the genotyping by sequencing approach and the building of appropriate genetic resources to undertake genomic selection from first-hand experience. We describe the potential to capture large-scale commercial phenotypes based on image analysis and artificial intelligence through machine learning, as inputs for calculation of genomic breeding values. The application of genomic selection over traditional aquatic breeding programs offers significant advantages through being able to accurately predict complex polygenic traits including disease resistance; increasing rates of genetic gain; minimizing inbreeding; and negating potential limiting effects of genotype by environment interactions. Further practical advantages of genomic selection through the use of large-scale communal mating and rearing systems are highlighted, as well as presenting rate-limiting steps that impact on attaining maximum benefits from adopting genomic selection. Genomic selection is now at the tipping point where commercial applications can be readily adopted and offer significant short- and long-term solutions to sustainable and profitable aquaculture industries.
Collapse
Affiliation(s)
- Kyall R Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
| | - Mehar S Khatkar
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - David B Jones
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Nima Khalilisamani
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Dean R Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
| | - Herman W Raadsma
- ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia.,Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
7
|
Li C, Wang J, Song K, Meng J, Xu F, Li L, Zhang G. Construction of a high-density genetic map and fine QTL mapping for growth and nutritional traits of Crassostrea gigas. BMC Genomics 2018; 19:626. [PMID: 30134839 PMCID: PMC6106840 DOI: 10.1186/s12864-018-4996-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Both growth and nutritional traits are important economic traits of Crassostrea gigas (C. gigas) in industry. But few work has been done to study the genetic architecture of nutritional traits of the oyster. In this study, we constructed a high-density genetic map of C. gigas to help assemble the genome sequence onto chromosomes, meanwhile explore the genetic basis for nutritional traits via quantitative trait loci (QTL) mapping. RESULTS The constructed genetic map contained 5024 evenly distributed markers, with an average marker interval of 0.68 cM, thus representing the densest genetic map produced for the oyster. According to the high collinearity between the consensus map and the oyster genome, 1574 scaffold (about 70%) of the genome sequence of C. gigas were successfully anchored to 10 linkage groups (LGs) of the consensus map. Using this high-qualified genetic map, we then conducted QTL analysis for growth and nutritional traits, the latter of which includes glycogen, amino acid (AA), and fatty acid (FA). Overall, 41 QTLs were detected for 17 traits. In addition, six candidate genes identified in the QTL interval showed significant correlation with the traits on transcriptional levels. These genes include growth-related genes AMY and BMP1, AA metabolism related genes PLSCR and GR, and FA metabolism regulation genes DYRK and ADAMTS. CONCLUSION Using the constructed high-qualified linkage map, this study not only assembled nearly 70% of the oyster genome sequence onto chromosomes, but also identified valuable markers and candidate genes for growth and nutritional traits, especially for AA and FA that undergone few studies before. These findings will facilitate genome assembly and molecular breeding of important economic traits in C. gigas.
Collapse
Affiliation(s)
- Chunyan Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Jinpeng Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China.
| |
Collapse
|
8
|
Hollenbeck CM, Johnston IA. Genomic Tools and Selective Breeding in Molluscs. Front Genet 2018; 9:253. [PMID: 30073016 PMCID: PMC6058216 DOI: 10.3389/fgene.2018.00253] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
The production of most farmed molluscs, including mussels, oysters, scallops, abalone, and clams, is heavily dependent on natural seed from the plankton. Closing the lifecycle of species in hatcheries can secure independence from wild stocks and enables long-term genetic improvement of broodstock through selective breeding. Genomic techniques have the potential to revolutionize hatchery-based selective breeding by improving our understanding of the characteristics of mollusc genetics that can pose a challenge for intensive aquaculture and by providing a new suite of tools for genetic improvement. Here we review characteristics of the life history and genetics of molluscs including high fecundity, self-fertilization, high genetic diversity, genetic load, high incidence of deleterious mutations and segregation distortion, and critically assess their impact on the design and effectiveness of selective breeding strategies. A survey of the results of current breeding programs in the literature show that selective breeding with inbreeding control is likely the best strategy for genetic improvement of most molluscs, and on average growth rate can be improved by 10% per generation and disease resistance by 15% per generation across the major farmed species by implementing individual or family-based selection. Rapid advances in sequencing technology have resulted in a wealth of genomic resources for key species with the potential to greatly improve hatchery-based selective breeding of molluscs. In this review, we catalog the range of genomic resources currently available for molluscs of aquaculture interest and discuss the bottlenecks, including lack of high-quality reference genomes and the relatively high cost of genotyping, as well as opportunities for applying genomics-based selection.
Collapse
Affiliation(s)
- Christopher M Hollenbeck
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
| | - Ian A Johnston
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom.,Xelect Ltd, St Andrews, United Kingdom
| |
Collapse
|
9
|
Plough LV. Genetic load in marine animals: a review. Curr Zool 2016; 62:567-579. [PMID: 29491946 PMCID: PMC5804265 DOI: 10.1093/cz/zow096] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/06/2016] [Indexed: 01/24/2023] Open
Abstract
Marine invertebrates and fish are well known for their remarkable genetic diversity, which is commonly explained by large population size and the characteristic dispersive nature of their early, planktonic life history. Other potential sources of diversity in marine animals, such as a higher mutation rate, have been much less considered, though evidence for a high genetic load in marine bivalves has been accumulating for nearly half a century. In this review, I examine evidence for a higher genetic load in marine animals from studies of molecular marker segregation and linkage over the last 40 years, and survey recent work examining mutational load with molecular evolution approaches. Overall, marine animals appear to have higher genetic load than terrestrial animals (higher dn/ds ratios, inbreeding load, and segregation dis`tortion), though results are mixed for marine fish and data are lacking for many marine animal groups. Bivalves (oysters) have the highest loads observed among marine animals, comparable only to long-lived plants; however, more data is needed from other bivalves and more marine invertebrate taxa generally. For oysters, a higher load may be related to a chronically lower effective population size that, in concert with a higher mutational rate, elevate the number of deleterious mutations observed. I suggest that future studies use high-throughput sequencing approaches to examine (1) polymorphism in genome-scale datasets across a wider range of marine animals at the population level and (2) intergenerational mutational changes between parents and offspring in crosses of aquaculture species to quantify mutation rates.
Collapse
Affiliation(s)
- Louis V. Plough
- Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Pt. Road, Cambridge, MD 21613, USA
| |
Collapse
|
10
|
Huang R, Sun J, Luo Q, He L, Liao L, Li Y, Guo F, Zhu Z, Wang Y. Genetic variations of body weight and GCRV resistance in a random mating population of grass carp. Oncotarget 2016; 6:35433-42. [PMID: 26439690 PMCID: PMC4742116 DOI: 10.18632/oncotarget.5945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/13/2015] [Indexed: 11/25/2022] Open
Abstract
The grass carp (Ctenopharyngodon idellus) is an important species in freshwater aquaculture both in China and on a global scale. Variety degeneration and frequent diseases have limited the further development of grass carp aquaculture. Thus, new and improved varieties are required. Here, we identified and assessed the body weight and disease resistance in a random mating population of 19 ♀ × 22 ♂ grass carp, which were derived from different water systems. In both the growth experimental group of 10,245 fish and grass carp reovirus (GCRV)-infected group with 10,000 fish, 78 full-sib families were statistically analyzed for body weight and GCRV resistance. The findings showed that body weight traits had low heritability (0.11 ± 0.04, 0.10 ± 0.03 and 0.12 ± 0.05), GCRV resistance traits had high heritability (0.63 ± 0.11); body weight was higher in 3 families, whereas GCRV resistance was significantly greater in 11 families. Our results confirmed that the natural germplasm resources of wild grass carp were genetically diverse. Breeding of GCRV resistant varieties of grass carp have better genetic basis. This study provides the basis for constructing basal populations for grass carp selective breeding, quantitative trait loci (QTL) and genome-wide association studies (GWAS) analysis.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Qing Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fuhua Guo
- Tongwei Company, Limited, Chengdu, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
11
|
Kennedy DA, Kurath G, Brito IL, Purcell MK, Read AF, Winton JR, Wargo AR. Potential drivers of virulence evolution in aquaculture. Evol Appl 2016; 9:344-54. [PMID: 26834829 PMCID: PMC4721074 DOI: 10.1111/eva.12342] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/06/2015] [Indexed: 01/24/2023] Open
Abstract
Infectious diseases are economically detrimental to aquaculture, and with continued expansion and intensification of aquaculture, the importance of managing infectious diseases will likely increase in the future. Here, we use evolution of virulence theory, along with examples, to identify aquaculture practices that might lead to the evolution of increased pathogen virulence. We identify eight practices common in aquaculture that theory predicts may favor evolution toward higher pathogen virulence. Four are related to intensive aquaculture operations, and four others are related specifically to infectious disease control. Our intention is to make aquaculture managers aware of these risks, such that with increased vigilance, they might be able to detect and prevent the emergence and spread of increasingly troublesome pathogen strains in the future.
Collapse
Affiliation(s)
- David A Kennedy
- Center for Infectious Disease Dynamics Departments of Biology and Entomology The Pennsylvania State University University Park PA USA; Fogarty International Center National Institutes of Health Bethesda MD USA
| | - Gael Kurath
- U.S. Geological Survey Western Fisheries Research Center Seattle WA USA
| | - Ilana L Brito
- Massachusetts Institute of Technology Cambridge MA USA
| | - Maureen K Purcell
- U.S. Geological Survey Western Fisheries Research Center Seattle WA USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics Departments of Biology and Entomology The Pennsylvania State University University Park PA USA; Fogarty International Center National Institutes of Health Bethesda MD USA
| | - James R Winton
- U.S. Geological Survey Western Fisheries Research Center Seattle WA USA
| | - Andrew R Wargo
- Virginia Institute of Marine Science College of William and Mary Gloucester Point VA USA
| |
Collapse
|
12
|
Vera M, Bello X, Álvarez-Dios JA, Pardo BG, Sánchez L, Carlsson J, Carlsson JE, Bartolomé C, Maside X, Martinez P. Screening of repetitive motifs inside the genome of the flat oyster (Ostrea edulis): Transposable elements and short tandem repeats. Mar Genomics 2015; 24 Pt 3:335-41. [DOI: 10.1016/j.margen.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/03/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
|
13
|
The use of -omic tools in the study of disease processes in marine bivalve mollusks. J Invertebr Pathol 2015; 131:137-54. [PMID: 26021714 DOI: 10.1016/j.jip.2015.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/09/2015] [Accepted: 05/05/2015] [Indexed: 01/01/2023]
Abstract
Our understanding of disease processes and host-pathogen interactions in model species has benefited greatly from the application of medium and high-throughput genomic, metagenomic, epigenomic, transcriptomic, and proteomic analyses. The rate at which new, low-cost, high-throughput -omic technologies are being developed has also led to an expansion in the number of studies aimed at gaining a better understanding of disease processes in bivalves. This review provides a catalogue of the genetic and -omic tools available for bivalve species and examples of how -omics has contributed to the advancement of marine bivalve disease research, with a special focus in the areas of immunity, bivalve-pathogen interactions, mechanisms of disease resistance and pathogen virulence, and disease diagnosis. The analysis of bivalve genomes and transcriptomes has revealed that many immune and stress-related gene families are expanded in the bivalve taxa examined thus far. In addition, the analysis of proteomes confirms that responses to infection are influenced by epigenetic, post-transcriptional, and post-translational modifications. The few studies performed in bivalves show that epigenetic modifications are non-random, suggesting a role for epigenetics in regulating the interactions between bivalves and their environments. Despite the progress -omic tools have enabled in the field of marine bivalve disease processes, there is much more work to be done. To date, only three bivalve genomes have been sequenced completely, with assembly status at different levels of completion. Transcriptome datasets are relatively easy and inexpensive to generate, but their interpretation will benefit greatly from high quality genome assemblies and improved data analysis pipelines. Finally, metagenomic, epigenomic, proteomic, and metabolomic studies focused on bivalve disease processes are currently limited but their expansion should be facilitated as more transcriptome datasets and complete genome sequences become available for marine bivalve species.
Collapse
|
14
|
Li H, Liu X, Zhang G. A consensus microsatellite-based linkage map for the hermaphroditic bay scallop (Argopecten irradians) and its application in size-related QTL analysis. PLoS One 2012; 7:e46926. [PMID: 23077533 PMCID: PMC3473060 DOI: 10.1371/journal.pone.0046926] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/06/2012] [Indexed: 01/04/2023] Open
Abstract
Bay scallop (Argopecten irradians) is one of the most economically important aquaculture species in China. In this study, we constructed a consensus microsatellite-based genetic linkage map with a mapping panel containing two hybrid backcross-like families involving two subspecies of bay scallop, A. i. irradians and A. i. concentricus. One hundred sixty-one microsatellite and one phenotypic (shell color) markers were mapped to 16 linkage groups (LGs), which corresponds to the haploid chromosome number of bay scallop. The sex-specific map was 779.2 cM and 781.6 cM long in female and male, respectively, whereas the sex-averaged map spanned 849.3 cM. The average resolution of integrated map was 5.9 cM/locus and the estimated coverage was 81.3%. The proportion of distorted markers occurred more in the hybrid parents, suggesting that the segregation distortion was possibly resulted from heterospecific interaction between genomes of two subspecies of bay scallop. The overall female-to-male recombination rate was 1.13:1 across all linked markers in common to both parents, and considerable differences in recombination also existed among different parents in both families. Four size-related traits, including shell length (SL), shell height (SH), shell width (SW) and total weight (TW) were measured for quantitative trait loci (QTL) analysis. Three significant and six suggestive QTL were detected on five LGs. Among the three significant QTL, two (qSW-10 and qTW-10, controlling SW and TW, respectively) were mapped on the same region near marker AiAD121 on LG10 and explained 20.5% and 27.7% of the phenotypic variance, while the third (qSH-7, controlling SH) was located on LG7 and accounted for 15.8% of the phenotypic variance. Six suggestive QTL were detected on four different LGs. The linkage map and size-related QTL obtained in this study may facilitate marker-assisted selection (MAS) in bay scallop.
Collapse
Affiliation(s)
- Hongjun Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | |
Collapse
|
15
|
Zhan X, Fan F, You W, Yu J, Ke C. Construction of an integrated map of Haliotis diversicolor using microsatellite markers. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:79-86. [PMID: 21617897 DOI: 10.1007/s10126-011-9390-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/03/2011] [Indexed: 05/30/2023]
Abstract
Small abalone, Haliotis diversicolor, is naturally distributed along the coastal waters of East Asia from Japan to the Philippines. It is an economically important maricultured species in southern China and Taiwan. Genetic linkage maps for small abalone were constructed using a total of 308 simple sequence repeat markers including 297 novel markers. Segregation data on 96 progeny were genotyped using a pseudo-testcross strategy. Sixteen linkage groups were identified in both female and male maps, consistent with the haploid chromosome number. The female linkage map covered 758.3 cM, with an average interval of 5.2 cM. The male linkage map spanned a total genetic distance of 676.2 cM, with an average interval of 4.5 cM. An integrated map was constructed by incorporating the homologous parental linkage groups, resulting in 16 linkage groups with a total of 762.1 cM. Genome coverage of the integrated linkage map was approximately 80.7%. The genetic linkage maps of small abalone may facilitate marker-assisted selection and quantitative trait loci mapping.
Collapse
Affiliation(s)
- Xin Zhan
- College of Oceanography and Environmental Science, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | | | | | | | | |
Collapse
|
16
|
Hwang SD, Fuji K, Takano T, Sakamoto T, Kondo H, Hirono I, Aoki T. Linkage mapping of toll-like receptors (TLRs) in Japanese flounder, Paralichthys olivaceus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:1086-1091. [PMID: 21494881 DOI: 10.1007/s10126-011-9371-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 03/23/2011] [Indexed: 05/30/2023]
Abstract
Toll-like receptors (TLRs) are responsible for the recognition of specific pathogen-associated molecular patterns and consequently activate signal pathways leading to inflammatory and interferon responses. The region surrounding several TLRs was previously found to be associated with resistance to specific disease. Hence, we determined the location of 11 TLRs in Japanese flounder (Paralichthys olivaceus) using polymorphic microsatellite markers. TLR1 and TLR3 were located on linkage group (LG) 21 and 7, respectively. Membrane TLR5 and soluble TLR5 were mapped to LG22. TLR7 and TLR8 were mapped to LG3. TLR9 was found on LG1 and TLR14 and TLR21 were located on the same linkage group, LG10. TLR22 was found on LG8. Interestingly, TLR2 was mapped with the previously reported Poli9-8TUF microsatellite marker which is tightly associated with lymphocystis virus disease resistance. Therefore, TLR2 is a candidate gene for resistance to lymphocystis disease. These results imply that the location of a TLR associated with a particular disease may be valuable for the research on the relationship between host immune response and disease resistance.
Collapse
Affiliation(s)
- Seong Don Hwang
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang CM, Lo LC, Zhu ZY, Pang HY, Liu HM, Tan J, Lim HS, Chou R, Orban L, Yue GH. Mapping QTL for an adaptive trait: the length of caudal fin in Lates calcarifer. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:74-82. [PMID: 20352272 DOI: 10.1007/s10126-010-9271-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 12/17/2009] [Indexed: 05/29/2023]
Abstract
The caudal fin represents a fundamental design feature of fishes and plays an important role in locomotor dynamics in fishes. The shape of caudal is an important parameter in traditional systematics. However, little is known about genes involved in the development of different forms of caudal fins. This study was conducted to identify and map quantitative trait loci (QTL) affecting the length of caudal fin and the ratio between tail length and standard body length in Asian seabass (Lates calcarifer). One F1 family containing 380 offspring was generated by crossing two unrelated individuals. One hundred and seventeen microsatellites almost evenly distributed along the whole genome were genotyped. Length of caudal fin at 90 days post-hatch was measured. QTL analysis detected six significant (genome-wide significant) and two suggestive (linkage-group-wide significant) QTL on seven linkage groups. The six significant QTL explained 5.5-16.6% of the phenotypic variance, suggesting these traits were controlled by multiple genes. Comparative genomics analysis identified several potential candidate genes for the length of caudal fin. The QTL for the length of caudal fin detected for the first time in marine fish may provide a starting point for the future identification of genes involved in the development of different forms of caudal fins in fishes.
Collapse
Affiliation(s)
- C M Wang
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lallias D, Boudry P, Lapègue S, King JW, Beaumont AR. Strategies for the retention of high genetic variability in European flat oyster (Ostrea edulis) restoration programmes. CONSERV GENET 2010. [DOI: 10.1007/s10592-010-0081-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Sauvage C, Boudry P, de Koning DJ, Haley CS, Heurtebise S, Lapègue S. QTL for resistance to summer mortality and OsHV-1 load in the Pacific oyster (Crassostrea gigas). Anim Genet 2010; 41:390-9. [PMID: 20096029 DOI: 10.1111/j.1365-2052.2009.02018.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Summer mortality is a phenomenon severely affecting the aquaculture production of the Pacific oyster (Crassostrea gigas). Although its causal factors are complex, resistance to mortality has been described as a highly heritable trait, and several pathogens including the virus Ostreid Herpes virus type 1 (OsHV-1) have been associated with this phenomenon. A QTL analysis for survival of summer mortality and OsHV-1 load, estimated using real-time PCR, was performed using five F(2) full-sib families resulting from a divergent selection experiment for resistance to summer mortality. A consensus linkage map was built using 29 SNPs and 51 microsatellite markers. Five significant QTL were identified and assigned to linkage groups V, VI, VII and IX. Analysis of single full-sib families revealed differential QTL segregation between families. QTL for the two-recorded traits presented very similar locations, highlighting the interest of further study of their respective genetic controls. These QTL show substantial genetic variation in resistance to summer mortality, and present new opportunities for selection for resistance to OsHV-1.
Collapse
Affiliation(s)
- C Sauvage
- Ifremer, Laboratoire de Génétique et Pathologie, 17390, La Tremblade, France
| | | | | | | | | | | |
Collapse
|