1
|
Melo DSD, de Sá ALA, de Matos Guerreiro SL, Natividade J, Gomes PFF, Takata R, da Silva Filho E, Palheta GDA, de Melo NFAC, Sterzelecki FC, Hamoy I. Growth, survival, and myogenic gene expression in the post-larvae of Colossoma macropomum provisioned with Artemia nauplii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:145-155. [PMID: 36971872 DOI: 10.1007/s10695-023-01182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Artemia nauplii are widely used as fish larvae feed due to its beneficial nutritional characteristics for larval development; however, efficient feeding strategies are needed to balance its high costs. Therefore, we evaluated the effects of different densities of Artemia nauplii (100, 250, 500, 750, and 1000 nauplii/post-larvae) on the growth, survival, water quality, and myogenic gene expression of tambaqui (Colossoma macropomum) post-larvae cultivated in a recirculating aquaculture system. After 2 weeks of trial, there was a significant decrease in dissolved oxygen concentration with the increase in nauplii density, but it did not interfere with larval performance and survival. In the first week, larvae fed with fewer than 500 nauplii/post-larvae presented slower growth, while in the second week, larvae fed with 1000 nauplii/post-larvae had the highest final weight and length. Regression analysis suggests that the optimum feeding density of Artemia nauplii during the first week is 411 nauplii/post-larvae, while for the second week, the growth increased proportionally to the feeding densities. The relative expression of the myod, myog, and mstn genes was higher in larvae fed with fewer than 500 nauplii/post-larvae. Although low-growing larvae showed increased expression of myod and myog genes, responsible for muscle hyperplasia and hypertrophy, respectively, mstn expression may have played a significant inhibitory role in larval development. Further research is needed to better determine the effects of the live food on the zootechnical performance and the expression of the myogenic genes in the initial phase of the life cycle of the tambaqui post-larvae.
Collapse
Affiliation(s)
- Debora Sayumi Doami Melo
- Laboratório de Genética Aplicada (LGA), Instituto Socioambiental E Dos Recursos Hídricos (ISARH), Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil
| | - André Luiz Alves de Sá
- Laboratório de Genética Aplicada (LGA), Instituto Socioambiental E Dos Recursos Hídricos (ISARH), Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil
| | - Sávio Lucas de Matos Guerreiro
- Laboratório de Genética Humana E Médica (LGHM), Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Pará, Brazil
| | - Joane Natividade
- Laboratório de Biossistemas Aquáticos Amazônicos (BIOAQUAM), ISARH, UFRA, Belém, Pará, Brazil
| | | | - Rodrigo Takata
- Departamento de Pesquisa E Produção, Fundação Instituto de Pesca Do Estado Do Rio de Janeiro (FIPERJ), Rio de Janeiro, Cordeiro, Brazil
| | - Ednaldo da Silva Filho
- Laboratório de Sorologia E Biologia Molecular (LSBM), Instituto de Ciências Agrárias, UFRA, Belém, Pará, Brazil
| | | | | | | | - Igor Hamoy
- Laboratório de Genética Aplicada (LGA), Instituto Socioambiental E Dos Recursos Hídricos (ISARH), Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil.
| |
Collapse
|
2
|
Herrera M, Mancera JM, Costas B. The Use of Dietary Additives in Fish Stress Mitigation: Comparative Endocrine and Physiological Responses. Front Endocrinol (Lausanne) 2019; 10:447. [PMID: 31354625 PMCID: PMC6636386 DOI: 10.3389/fendo.2019.00447] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/20/2019] [Indexed: 01/01/2023] Open
Abstract
In the last years, studies on stress attenuation in fish have progressively grown. This is mainly due to the interest of institutions, producers, aquarists and consumers in improving the welfare of farmed fish. In addition to the development of new technologies to improve environmental conditions of cultured fish, the inclusion of beneficial additives in the daily meal in order to mitigate the stress response to typical stressors (netting, overcrowding, handling, etc.) has been an important research topic. Fish are a highly diverse paraphyletic group (over 27,000 species) though teleost infraclass include around 96% of fish species. Since those species are distributed world-wide, a high number of different habitats and vital requirements exist, including a wide range of environmental conditions determining specifically the stress response. Although the generalized endocrine response to stress (based on the release of catecholamines and corticosteroids) is detectable and therefore provides essential information, a high diversity of physiological effects have been described depending on species. Moreover, recent omics techniques have provided a powerful tool for detecting specific differences regarding the stress response. For instance, for transcriptomic approaches, the gene expression of neuropeptides and other proteins acting as hormonal precursors during stress has been assessed in some fish species. The use of different additives in fish diets to mitigate stress responses has been deeply studied. Besides the species factor, the additive type also plays a pivotal role in the differentiation of the stress response. In the literature, several types of feed supplements in different species have been assayed, deriving in a series of physiological responses which have not focused exclusively on the stress system. Immunological, nutritional and metabolic changes have been reported in these experiments, always associated to endocrine processes. The biochemical nature and physiological functionality of those feed additives strongly affect the stress response and, in fact, these can act as neurotransmitters or hormone precursors, energy substrates, cofactors and other essential elements, implying multi-systematic and multi-organic responses. In this review, the different physiological responses among fish species fed stress-attenuating diets based on biomolecules and minerals have been assessed, focusing on the endocrine regulation and its physiological effects.
Collapse
Affiliation(s)
- Marcelino Herrera
- IFAPA Centro Agua del Pino, Huelva, Spain
- *Correspondence: Marcelino Herrera
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI·MAR), Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Cádiz, Spain
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Early decrease in dietary protein:energy ratio by fat addition and ontogenetic changes in muscle growth mechanisms of rainbow trout: short- and long-term effects. Br J Nutr 2014; 112:674-87. [PMID: 24949706 DOI: 10.1017/s0007114514001391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As the understanding of the nutritional regulation of muscle growth mechanisms in fish is fragmentary, the present study aimed to (1) characterise ontogenetic changes in muscle growth-related genes in parallel to changes in muscle cellularity; (2) determine whether an early decrease in dietary protein:energy ratio by fat addition affects the muscle growth mechanisms of rainbow trout (Oncorhynchus mykiss) alevins; and (3) determine whether this early feeding of a high-fat (HF) diet to alevins had a long-term effect on muscle growth processes in juveniles fed a commercial diet. Developmental regulation of hyperplasia and hypertrophy was evidenced at the molecular (expression of myogenic regulatory factors, proliferating cell nuclear antigen and myosin heavy chains (MHC)) and cellular (number and diameter of white muscle fibres) levels. An early decrease in dietary protein:energy ratio by fat addition stimulated the body growth of alevins but led to a fatty phenotype, with accumulation of lipids in the anterior part, and less caudal muscle when compared at similar body weights, due to a decrease in both the white muscle hyperplasia and maximum hypertrophy of white muscle fibres. These HF diet-induced cellular changes were preceded by a very rapid down-regulation of the expression of fast-MHC. The present study also demonstrated that early dietary composition had a long-term effect on the subsequent muscle growth processes of juveniles fed a commercial diet for 3 months. When compared at similar body weights, initially HF diet-fed juveniles indeed had a lower mean diameter of white muscle fibres, a smaller number of large white muscle fibres, and lower expression levels of MyoD1 and myogenin. These findings demonstrated the strong effect of early feed composition on the muscle growth mechanisms of trout alevins and juveniles.
Collapse
|
4
|
Rajan B, Kiron V, Fernandes JMO, Brinchmann MF. Localization and functional properties of two galectin-1 proteins in Atlantic cod (Gadus morhua) mucosal tissues. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:83-93. [PMID: 23416931 DOI: 10.1016/j.dci.2013.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 06/01/2023]
Abstract
Galectin-1 is a β-galactoside binding lectin with multiple immune functions in higher vertebrates. We report the characterization of two galectin-1 proteins from Atlantic cod, with emphasis on mucosal tissues. Tissue distribution of these two ≈14kDa galectin-1 proteins (Codgal1-1 and Codgal1-2) was ascertained by western blotting of one dimensional (1D) and two dimensional (2DE) gels. The two galectin-1 proteins were differentially localized in the mucosal tissues of cod. Codgal1-1 was predominantly localized in the basal cells of skin and this protein was present in all the early developmental stages examined, indicating a likely involvement in developmental processes. The two lectins were also localized in the adherent macrophage-like cells (MLC) from cod head kidney and results gathered indicate their possible secretion during Francisella noatunensis infection, suggesting that they are active components of immune defence. Lactose affinity chromatography coupled with gel filtration co-purified the two cod galectin-1 proteins, which hemagglutinated horse red blood cells in a lactose inhibitable manner. They also could bind and agglutinate both Gram-positive and Gram-negative bacteria. This study suggests multiple functional roles for galectin-1, especially in development and innate immune response of Atlantic cod.
Collapse
Affiliation(s)
- Binoy Rajan
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049 Bodø, Norway
| | | | | | | |
Collapse
|
5
|
Lanes C, Fernandes J, Kiron V, Babiak I. Profiling of key apoptotic, stress, and immune-related transcripts during embryonic and postembryonic development of Atlantic cod (Gadus morhua L.). Theriogenology 2012; 78:1583-1596.e2. [DOI: 10.1016/j.theriogenology.2012.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/05/2012] [Accepted: 07/05/2012] [Indexed: 12/13/2022]
|