1
|
Zhang X, Lv K, Xie H, Gan Y, Yu W, Gong Q. Cloning, expression and characterization of novel hyaluronan lyases Vhylzx1 and Vhylzx2 from Vibrio sp. ZG1. Carbohydr Res 2024; 543:109221. [PMID: 39067181 DOI: 10.1016/j.carres.2024.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Hyaluronidases are a class of enzymes that can degrade hyaluronic acid and have a wide range of applications in the medical field. In this study, the marine bacterium Vibrio sp. ZG1, which can degrade HA, was isolated, leading to the discovery of two novel hyaluronan lyases, Vhylzx1 and Vhylzx2, through genome sequencing and bioinformatic analysis. These lyases belong to the polysaccharide lyase-8 family. Vhylzx1 and Vhylzx2 specifically degrade HA, with highest activity at 35 °C, pH 5.7 and 50 °C, pH 7.1. Vhylzx1 and Vhylzx2 are endo-type enzymes that can fully degrade HA into unsaturated disaccharides. Sequence homology assessment and site-directed mutagenesis revealed that the catalytic residues of Vhylzx1 are Asn231, His281, and Tyr290, and that the catalytic residues of Vhylzx2 are Asn227, His277, and Tyr286. Moreover, this study used consensus sequences to enhance the specific activity of Vhylzx2 mutants. Notably, the mutants V564I, N742D, L619F, and D658G increases the specific activity by 2.4, 2.2, 1.3, and 1.2-fold. These characteristics are useful for further basic research and applications, and have a promising application in the preparation of biologically active hyaluronic acid oligosaccharides.
Collapse
Affiliation(s)
- Xinru Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Kaiwen Lv
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Hongjie Xie
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yutai Gan
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
2
|
Atanassova MR, Kolden Midtbo L, Mildenberger J, Friðjónsson ÓH. Novel biomaterials and biotechnological applications derived from North Atlantic sea cucumbers: A systematic review. THE WORLD OF SEA CUCUMBERS 2024:585-609. [DOI: 10.1016/b978-0-323-95377-1.00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
The structures and applications of microbial chondroitin AC lyase. World J Microbiol Biotechnol 2022; 38:199. [PMID: 35996038 DOI: 10.1007/s11274-022-03395-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
As an important glycosaminoglycan hydrolase, chondroitin lyases can hydrolyze chondroitin sulfate (CS) and release disaccharides and oligosaccharides. They are further divided into chondroitin AC, ABC, and B lyases according to their spatial structure and substrate specificity. Chondroitin AC lyase can hydrolyze chondroitin sulfate A (CS-A), chondroitin sulfate C (CS-C), and hyaluronic acid (HA), making it an essential biocatalyst for the preparation of low molecular weight chondroitin sulfate, analysis of the structure of the chondroitin sulfate, treatment of spinal cord injury, and purification of heparin. This paper provides an overview of reported chondroitin AC lyases, including their properties and the challenges faced in industrial applications. Up to now, although many attempts have been adopted to improve the enzyme properties, the most important factors are still the low activity and stability. The relations between the stability of the enzyme and the spatial structure were also summarized and discussed. Also perspectives for remodeling the enzymes with protein engineering are included.
Collapse
|
4
|
Mou M, Hu Q, Li H, Long L, Li Z, Du X, Jiang Z, Ni H, Zhu Y. Characterization of a Thermostable and Surfactant-Tolerant Chondroitinase B from a Marine Bacterium Microbulbifer sp. ALW1. Int J Mol Sci 2022; 23:5008. [PMID: 35563396 PMCID: PMC9103228 DOI: 10.3390/ijms23095008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Chondroitinase plays an important role in structural and functional studies of chondroitin sulfate (CS). In this study, a new member of chondroitinase B of PL6 family, namely ChSase B6, was cloned from marine bacterium Microbulbifer sp. ALW1 and subjected to enzymatic and structural characterization. The recombinant ChSase B6 showed optimum activity at 40 °C and pH 8.0, with enzyme kinetic parameters of Km and Vmax against chondroitin sulfate B (CSB) to be 7.85 µg/mL and 1.21 U/mg, respectively. ChSase B6 demonstrated thermostability under 60 °C for 2 h with about 50% residual activity and good pH stability under 4.0-10.0 for 1 h with above 60% residual activity. In addition, ChSase B6 displayed excellent stability against the surfactants including Tween-20, Tween-80, Trion X-100, and CTAB. The degradation products of ChSase B6-treated CSB exhibited improved antioxidant ability as a hydroxyl radical scavenger. Structural analysis and site-directed mutagenesis suggested that the conserved residues Lys248 and Arg269 were important for the activity of ChSase B6. Characterization, structure, and molecular dynamics simulation of ChSase B6 provided a guide for further tailoring for its industrial application for chondroitin sulfate bioresource development.
Collapse
Affiliation(s)
- Mingjing Mou
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Qingsong Hu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Hebin Li
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China;
| | - Liufei Long
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Xiping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (M.M.); (Q.H.); (L.L.); (Z.L.); (X.D.); (Z.J.); (H.N.)
| |
Collapse
|
5
|
Guo LB, Zhu CY, Wu YB, Fan XM, Zhang YW. A novel chondroitin AC lyase from Pedobacter xixiisoli: Cloning, expression, characterization and the application in the preparation of oligosaccharides. Enzyme Microb Technol 2021; 146:109765. [PMID: 33812567 DOI: 10.1016/j.enzmictec.2021.109765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 01/22/2023]
Abstract
Chondroitin AC lyase can efficiently hydrolyze chondroitin sulfate (CS) to low molecule weight chondroitin sulfate, which has been widely used in clinical therapy, including anti-tumor, anti-oxidation, hypolipidemic, and anti-inflammatory. In this work, a novel chondroitin AC lyase from Pedobacter xixiisoli (PxchonAC) was cloned and overexpressed in Escherichia coli BL21 (DE3). The characterization of PxchonAC showed that it has specific activities on chondroitin sulfate A, Chondroitin sulfate C and hyaluronic acid with 428.77, 270.57, and 136.06 U mg-1, respectively. The Km and Vmax of PxchonAC were 0.61 mg mL-1 and 670.18 U mg-1 using chondroitin sulfate A as the substrate. The enzyme had a half-life of roughly 660 min at 37 °C in the presence of Ca2+ and remained a residual activity of 54 % after incubated at 4 °C for 25 days. Molecular docking revealed that Asn123, His223, Tyr232, Arg286, Arg290, Asn372, and Glu374 were mainly involved in the substrate binding. The enzymatic hydrolysis product was analyzed by gel permeation chromatography, demonstrating PxchonAC could hydrolyze CS efficiently.
Collapse
Affiliation(s)
- Li-Bin Guo
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Chen-Yuan Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yi-Bei Wu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xiao-Man Fan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
6
|
Wang W, Shi L, Qin Y, Li F. Research and Application of Chondroitin Sulfate/Dermatan Sulfate-Degrading Enzymes. Front Cell Dev Biol 2021; 8:560442. [PMID: 33425887 PMCID: PMC7793863 DOI: 10.3389/fcell.2020.560442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/05/2020] [Indexed: 01/11/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are widely distributed on the cell surface and in the extracellular matrix in the form of proteoglycan, where they participate in various biological processes. The diverse functions of CS/DS can be mainly attributed to their high structural variability. However, their structural complexity creates a big challenge for structural and functional studies of CS/DS. CS/DS-degrading enzymes with different specific activities are irreplaceable tools that could be used to solve this problem. Depending on the site of action, CS/DS-degrading enzymes can be classified as glycosidic bond-cleaving enzymes and sulfatases from animals and microorganisms. As discussed in this review, a few of the identified enzymes, particularly those from bacteria, have wildly applied to the basic studies and applications of CS/DS, such as disaccharide composition analysis, the preparation of bioactive oligosaccharides, oligosaccharide sequencing, and potential medical application, but these do not fulfill all of the needs in terms of the structural complexity of CS/DS.
Collapse
Affiliation(s)
- Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Liran Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Yong Qin
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| |
Collapse
|
7
|
Ji Y, Zhang S, Qiao M, Jiao R, Li J, Song P, Zhang X, Huang H. Synthesis of structurally defined chondroitin sulfate: Paving the way to the structure-activity relationship studies. Carbohydr Polym 2020; 248:116796. [PMID: 32919534 DOI: 10.1016/j.carbpol.2020.116796] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Chondroitin sulfate (CS) is one of the major and widespread glycosaminoglycans, a family of structurally complex, linear, anionic hetero-co-polysaccharides. CS plays a vital role in various normal physiological and pathological processes, thus, showing varieties of biological activities, such as anti-oxidation, anti-atherosclerosis, anti-thrombosis, and insignificant immunogenicity. However, the heterogeneity of the naturally occurring CS potentially leads to function unspecific and limits further structure-activity relationship studies. Therefore, the synthesis of CS with well-defined and uniform chain lengths is of major interest for the development of reliable drugs. In this review, we examine the remarkable progress that has been made in the chemical, enzymatic and chemoenzymatic synthesis of CS and its derivatives, providing a broad spectrum of options to access CS of well controlled chain lengths.
Collapse
Affiliation(s)
- Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shilin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ruoyu Jiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Sun J, Han X, Song G, Gong Q, Yu W. Cloning, Expression, and Characterization of a New Glycosaminoglycan Lyase from Microbacterium sp. H14. Mar Drugs 2019; 17:md17120681. [PMID: 31810166 PMCID: PMC6950261 DOI: 10.3390/md17120681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
Glycosaminoglycan (GAG) lyase is an effective tool for the structural and functional studies of glycosaminoglycans and preparation of functional oligosaccharides. A new GAG lyase from Microbacterium sp. H14 was cloned, expressed, purified, and characterized, with a molecular weight of approximately 85.9 kDa. The deduced lyase HCLaseM belonged to the polysaccharide lyase (PL) family 8. Based on the phylogenetic tree, HCLaseM could not be classified into the existing three subfamilies of this family. HCLaseM showed almost the same enzyme activity towards hyaluronan (HA), chondroitin sulfate A (CS-A), CS-B, CS-C, and CS-D, which was different from reported GAG lyases. HCLaseM exhibited the highest activities to both HA and CS-A at its optimal temperature (35 °C) and pH (pH 7.0). HCLaseM was stable in the range of pH 5.0–8.0 and temperature below 30 °C. The enzyme activity was independent of divalent metal ions and was not obviously affected by most metal ions. HCLaseM is an endo-type enzyme yielding unsaturated disaccharides as the end products. The facilitated diffusion effect of HCLaseM is dose-dependent in animal experiments. These properties make it a candidate for further basic research and application.
Collapse
Affiliation(s)
- Junhao Sun
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (G.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xu Han
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (G.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Guanrui Song
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (G.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (G.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Correspondence: (Q.G.); (W.Y.); Tel.: +86-532-8203-2067 (Q.G.); +86-532-8203-1680 (W.Y.)
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (G.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Correspondence: (Q.G.); (W.Y.); Tel.: +86-532-8203-2067 (Q.G.); +86-532-8203-1680 (W.Y.)
| |
Collapse
|
9
|
Rhizobium spp exopolysaccharides production and xanthan lyase use on its structural modification. Int J Biol Macromol 2019; 136:424-435. [DOI: 10.1016/j.ijbiomac.2019.06.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/25/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
|
10
|
Abstract
Glycosaminoglycans (GAGs) and their low-molecular weight derivates have received considerable interest in terms of their potential clinical applications, and display a wide variety of pharmacological and pharmacokinetic properties. Structurally distinct GAG chains can be prepared by enzymatic depolymerization. A variety of bacterial chondroitin sulfate (CS) lyases have been identified, and have been widely used as catalysts in this process. Here, we identified a putative chondroitin AC exolyase gene, AschnAC, from an Arthrobacter sp. strain found in a CS manufacturing workshop. We expressed the enzyme, AsChnAC, recombinantly in Escherichia coli, then purified and characterized it in vitro. The enzyme indeed displayed exolytic cleavage activity toward HA and various CSs. Removing the putative N-terminal secretion signal peptide of AsChnAC improved its expression level in E. coli while maintaining chondroitin AC exolyase activity. This novel catalyst exhibited its optimal activity in the absence of added metal ions. AsChnAC has potential applications in preparation of low-molecular weight GAGs, making it an attractive catalyst for further investigation.
Collapse
|
11
|
Kang Z, Zhou Z, Wang Y, Huang H, Du G, Chen J. Bio-Based Strategies for Producing Glycosaminoglycans and Their Oligosaccharides. Trends Biotechnol 2018; 36:806-818. [DOI: 10.1016/j.tibtech.2018.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/06/2023]
|
12
|
A new member of family 8 polysaccharide lyase chondroitin AC lyase ( Ps PL8A) from Pedobacter saltans displays endo- and exo-lytic catalysis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Hyaluronidase and Chondroitinase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:75-87. [DOI: 10.1007/5584_2016_54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Dobruchowska JM, Jonsson JO, Fridjonsson OH, Aevarsson A, Kristjansson JK, Altenbuchner J, Watzlawick H, Gerwig GJ, Dijkhuizen L, Kamerling JP, Hreggvidsson GO. Modification of linear (β1→3)-linked gluco-oligosaccharides with a novel recombinant β-glucosyltransferase (trans-β-glucosidase) enzyme from Bradyrhizobium diazoefficiens. Glycobiology 2016; 26:1157-1170. [PMID: 27550196 DOI: 10.1093/glycob/cww074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Recently, we have shown that glycoside hydrolases enzymes of family GH17 from proteobacteria (genera Pseudomonas, Azotobacter) catalyze elongation transfer reactions with laminari-oligosaccharides generating (β1→3) linkages preferably and to a lesser extent (β1→6) or (β1→4) linkages. In the present study, the cloning and characterization of the gene encoding the structurally very similar GH17 domain of the NdvB enzyme from Bradyrhizobium diazoefficiens, designated Glt20, as well as its catalytic properties are described. The Glt20 enzyme was strikingly different from the previously investigated bacterial GH17 enzymes, both regarding substrate specificity and product formation. The Azotobacter and Pseudomonas enzymes cleaved the donor laminari-oligosaccharide substrates three or four moieties from the non-reducing end, generating linear oligosaccharides. In contrast, the Glt20 enzyme cleaved donor laminari-oligosaccharide substrates two glucose moieties from the reducing end, releasing laminaribiose and transferring the remainder to laminari-oligosaccharide acceptor substrates creating only (β1→3)(β1→6) branching points. This enables Glt20 to transfer larger oligosaccharide chains than the other type of bacterial enzymes previously described, and helps explain the biologically significant formation of cyclic β-glucans in B. diazoefficiens.
Collapse
Affiliation(s)
- Justyna M Dobruchowska
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | | | | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Hildegard Watzlawick
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Gerrit J Gerwig
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Johannis P Kamerling
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gudmundur O Hreggvidsson
- Matís, Vínlandsleid 12, 113 Reykjavík, Iceland .,Department of Biology, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland
| |
Collapse
|
15
|
Yin FX, Wang FS, Sheng JZ. Uncovering the Catalytic Direction of Chondroitin AC Exolyase: FROM THE REDUCING END TOWARDS THE NON-REDUCING END. J Biol Chem 2016; 291:4399-406. [PMID: 26742844 DOI: 10.1074/jbc.c115.708396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 01/08/2023] Open
Abstract
Glycosaminoglycans (GAGs) are polysaccharides that play vital functional roles in numerous biological processes, and compounds belonging to this class have been implicated in a wide variety of diseases. Chondroitin AC lyase (ChnAC) (EC 4.2.2.5) catalyzes the degradation of various GAGs, including chondroitin sulfate and hyaluronic acid, to give the corresponding disaccharides containing an Δ(4)-unsaturated uronic acid at their non-reducing terminus. ChnAC has been isolated from various bacteria and utilized as an enzymatic tool for study and evaluating the sequencing of GAGs. Despite its substrate specificity and the fact that its crystal structure has been determined to a high resolution, the direction in which ChnAC catalyzes the cleavage of oligosaccharides remain unclear. Herein, we have determined the structural cues of substrate depolymerization and the cleavage direction of ChnAC using model substrates and recombinant ChnAC protein. Several structurally defined oligosaccharides were synthesized using a chemoenzymatic approach and subsequently cleaved using ChnAC. The degradation products resulting from this process were determined by mass spectrometry. The results revealed that ChnAC cleaved the β1,4-glycosidic linkages between glucuronic acid and glucosamine units when these bonds were located on the reducing end of the oligosaccharide. In contrast, the presence of a GlcNAc-α-1,4-GlcA unit at the reducing end of the oligosaccharide prevented ChnAC from cleaving the GalNAc-β1,4-GlcA moiety located in the middle or at the non-reducing end of the chain. These interesting results therefore provide direct proof that ChnAC cleaves oligosaccharide substrates from their reducing end toward their non-reducing end. This conclusion will therefore enhance our collective understanding of the mode of action of ChnAC.
Collapse
Affiliation(s)
- Feng-Xin Yin
- From the Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China and
| | - Feng-Shan Wang
- From the Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China and National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Ju-Zheng Sheng
- From the Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China and National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| |
Collapse
|