1
|
Rohlfing K, Grewoldt M, Cordellier M, Dobler S. Evidence for feminized genetic males in a flea beetle using newly identified X-linked markers. Ecol Evol 2024; 14:e70123. [PMID: 39135725 PMCID: PMC11318108 DOI: 10.1002/ece3.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024] Open
Abstract
The equilibrium of sex ratios in sexually reproducing species is often disrupted by various environmental and genetic factors, including endosymbionts like Wolbachia. In this study, we explore the highly female-biased sex ratio observed in the flea beetle, Altica lythri, and its underlying mechanisms. Ancient hybridization events between Altica species have led to mitochondrial DNA introgression, resulting in distinct mitochondrial haplotypes that go along with different Wolbachia infections (HT1-wLytA1, HT1*- uninfected, HT2-wLytA2, and HT3-wLytB). Notably, beetles with some haplotypes exclusively produce female offspring, suggesting potential Wolbachia-induced phenomena such as feminization of genetic males. However, the observed female bias could also be a consequence of the ancient hybridization resulting in nuclear-cytoplasmic conflicts between introgressed mtDNA and nuclear genes. Through transcriptomic analysis and the program SEX-DETector, we established markers for genotypic sex differentiation for A. lythri, enabling genetic sexing via qPCR. Our findings suggest that feminization of genetic males is contributing to the skewed sex ratios, highlighting the intricate dynamics of sex determination and reproductive strategies in this flea beetle. This study provides valuable insights into the dynamics of genetic conflicts, endosymbionts, and sex ratios, revealing the novel phenomenon of genetic male feminization in the flea beetle A. lythri.
Collapse
Affiliation(s)
- Kim Rohlfing
- Institute of Animal Cell and Systems Biology, Universität HamburgHamburgGermany
| | - Malte Grewoldt
- Institute of Animal Cell and Systems Biology, Universität HamburgHamburgGermany
- Present address:
Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Mathilde Cordellier
- Institute of Animal Cell and Systems Biology, Universität HamburgHamburgGermany
- Present address:
Institut für Biowissenschaften, Genetik – Populationsgenetik, Universität RostockRostockGermany
| | - Susanne Dobler
- Institute of Animal Cell and Systems Biology, Universität HamburgHamburgGermany
| |
Collapse
|
2
|
Xiao Y, Xiao Z, Liu L, Ma Y, Zhao H, Wu Y, Huang J, Xu P, Liu J, Li J. Innovative approach for high-throughput exploiting sex-specific markers in Japanese parrotfish Oplegnathus fasciatus. Gigascience 2024; 13:giae045. [PMID: 39028586 PMCID: PMC11258905 DOI: 10.1093/gigascience/giae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/21/2024] [Accepted: 06/22/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The use of sex-specific molecular markers has become a prominent method in enhancing fish production and economic value, as well as providing a foundation for understanding the complex molecular mechanisms involved in fish sex determination. Over the past decades, research on male and female sex identification has predominantly employed molecular biology methodologies such as restriction fragment length polymorphism, random amplification of polymorphic DNA, simple sequence repeat, and amplified fragment length polymorphism. The emergence of high-throughput sequencing technologies, particularly Illumina, has led to the utilization of single nucleotide polymorphism and insertion/deletion variants as significant molecular markers for investigating sex identification in fish. The advancement of sex-controlled breeding encounters numerous challenges, including the inefficiency of current methods, intricate experimental protocols, high costs of development, elevated rates of false positives, marker instability, and cumbersome field-testing procedures. Nevertheless, the emergence and swift progress of PacBio high-throughput sequencing technology, characterized by its long-read output capabilities, offers novel opportunities to overcome these obstacles. FINDINGS Utilizing male/female assembled genome information in conjunction with short-read sequencing data survey and long-read PacBio sequencing data, a catalog of large-segment (>100 bp) insertion/deletion genetic variants was generated through a genome-wide variant site-scanning approach with bidirectional comparisons. The sequence tagging sites were ranked based on the long-read depth of the insertion/deletion site, with markers exhibiting lower long-read depth being considered more effective for large-segment deletion variants. Subsequently, a catalog of bulk primers and simulated PCR for the male/female variant loci was developed, incorporating primer design for the target region and electronic PCR (e-PCR) technology. The Japanese parrotfish (Oplegnathus fasciatus), belonging to the Oplegnathidae family within the Centrarchiformes order, holds significant economic value as a rocky reef fish indigenous to East Asia. The criteria for rapid identification of male and female differences in Japanese parrotfish were established through agarose gel electrophoresis, which revealed 2 amplified bands for males and 1 amplified band for females. A high-throughput identification catalog of sex-specific markers was then constructed using this method, resulting in the identification of 3,639 (2,786 INS/853 DEL, ♀ as reference) and 3,672 (2,876 INS/833 DEL, ♂ as reference) markers in conjunction with 1,021 and 894 high-quality genetic sex identification markers, respectively. Sixteen differential loci were randomly chosen from the catalog for validation, with 11 of them meeting the criteria for male/female distinctions. The implementation of cost-effective and efficient technological processes would facilitate the rapid advancement of genetic breeding through expediting the high-throughput development of sex genetic markers for various species. CONCLUSIONS Our study utilized assembled genome information from male and female individuals obtained from PacBio, in addition to data from short-read sequencing data survey and long-read PacBio sequencing data. We extensively employed genome-wide variant site scanning and identification, high-throughput primer design of target regions, and e-PCR batch amplification, along with statistical analysis and ranking of the long-read depth of the variant sites. Through this integrated approach, we successfully compiled a catalog of large insertion/deletion sites (>100 bp) in both male and female Japanese parrotfish.
Collapse
Affiliation(s)
- Yongshuang Xiao
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhizhong Xiao
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Weihai Hao Huigan Marine Biotechnology Co., Weihai, 26449, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd, East Lake High-Tech Zone, Wuhan, 430073, China
| | - Yuting Ma
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Haixia Zhao
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yanduo Wu
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinwei Huang
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Pingrui Xu
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jing Liu
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jun Li
- Center for Ocean Mega-Science, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
3
|
Wang L, Guan T, Gu J, Zhu C, Pan Z, Wang H, Li J. Comparative transcriptome analysis of gonads in male and female Pseudobagrus ussuriensis (Bagridae, Siluriformes). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101105. [PMID: 37354751 DOI: 10.1016/j.cbd.2023.101105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
As an important aquaculture fish in the Heilongjiang River Basin, Pseudobagrus ussuriensis has high economic value, and all-male culture is beneficial to the economic development of this fish. In this study, the transcriptomes of gonads in males and females were analyzed, and some genes related to gonad development were found. A total of 82,931 unigenes were found (average length 1504 bp, N50 1829 bp). In addition, 4689 differentially expressed genes (DEGs; including 1424 genes upregulated and 3265 genes downregulated in males) were identified. Some genes associated with testis development (such as Dmrt1 and Ropn1l) were significantly upregulated in males, while genes related to ovary development (such as Wnt2, PLC, Cyp19a, ZP3) were significantly downregulated in males, demonstrating that these genes have a crucial influence on gonad development in P. ussuriensis. Some signaling pathways related to gonad development were found, such as the Wnt pathway and oocyte meiosis. The results of RNA-seq obtained in this study provide theoretical data for elucidating the potential mechanism of gonad development of P. ussuriensis and reliable genomic data for the establishment of mono-sex breeding of P. ussuriensis.
Collapse
Affiliation(s)
- Long Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huai'yin Normal University, Huai'an 223300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Tianyu Guan
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huai'yin Normal University, Huai'an 223300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jieyi Gu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huai'yin Normal University, Huai'an 223300, China
| | - Chuankun Zhu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huai'yin Normal University, Huai'an 223300, China
| | - Zhengjun Pan
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huai'yin Normal University, Huai'an 223300, China
| | - Hui Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huai'yin Normal University, Huai'an 223300, China.
| | - Jiale Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
4
|
Wei WY, Gong Y, Guo XF, Liu M, Zhou YL, Li Z, Zhou L, Wang ZW, Gui JF. Gonadal transcriptomes reveal sex-biased expression genes associated with sex determination and differentiation in red-tail catfish (Hemibagrus wyckioides). BMC Genomics 2023; 24:183. [PMID: 37024792 PMCID: PMC10077648 DOI: 10.1186/s12864-023-09264-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Red-tail catfish (Hemibagrus wyckioides) is an important commercially farmed catfish in southern China. Males of red-tail catfish grow faster than females, suggesting that all-male catfish will produce more significant economic benefits in aquaculture practice. However, little research has been reported on sex determination and gonadal development in red-tail catfish. RESULTS In this study, we performed the first transcriptomic analysis of male and female gonads at four developmental stages at 10, 18, 30, and 48 days post hatching (dph) using RNA-seq technology. A total of 23,588 genes were screened in 24 sequenced samples, of which 28, 213, 636, and 1381 differentially expressed genes (DEGs) were detected at four developmental stages, respectively. Seven candidate genes of sex determination and differentiation were further identified. Real-time quantitative PCR (RT-qPCR) further confirmed that anti-Mullerian hormone (amh), growth differentiation factor 6a (gdf6a), testis-specific gene antigen 10 (tsga10), and cytochrome P450 family 17 subfamily A (cyp17a) were highly expressed mainly in the male, while cytochrome P450 family 19 subfamily A polypeptide 1b (cyp19a1b), forkhead box L2 (foxl2), and hydroxysteroid 17-beta dehydrogenase 1 (hsd17b1) were highly expressed in the female. The KEGG pathway enrichment data showed that these identified DEGs were mainly involved in steroid hormone biosynthesis and TGF-β signaling pathways. CONCLUSIONS Based on RNA-seq data of gonads at the early developmental stages, seven DEGs shared by the four developmental stages were identified, among which amh and gdf6a may be the male-biased expression genes, while foxl2, cyp19a1b and hsd17b1 may be the female-biased expression genes in red-tail catfish. Our study will provide crucial genetic information for the research on sex control in red-tail catfish, as well as for exploring the evolutionary processes of sex determination mechanisms in fish.
Collapse
Affiliation(s)
- Wen-Yu Wei
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Fen Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Yang C, Chen L, Huang R, Gui B, Li Y, Li Y, Li Y, Liao L, Zhu Z, Wang Y. Screening of Genes Related to Sex Determination and Differentiation in Mandarin Fish ( Siniperca chuatsi). Int J Mol Sci 2022; 23:ijms23147692. [PMID: 35887035 PMCID: PMC9321114 DOI: 10.3390/ijms23147692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Mandarin fish has an XX/XY sex-determination system. The female mandarin fish is typically larger than the male. Sex identification and the discovery of genes related to sex determination in mandarin fish have important theoretical significance in the elucidation of the regulation and evolutionary mechanism of animal reproductive development. In this study, the chromosome-level genome of a female mandarin fish was assembled, and we found that LG24 of the genome was an X chromosome. A total of 61 genes on the X chromosome showed sex-biased expression. Only six gonadal genes (LG24G00426, LG24G003280, LG24G003300, LG24G003730, LG24G004200, and LG24G004770) were expressed in the testes, and the expression of the other gene LG24G003870 isoform 1 in the ovaries was significantly higher than that in the testes (p < 0.01). Five (except LG24G003280 and LG24G003300) of the seven aforementioned genes were expressed at the embryonic development stage, suggesting their involvement in early sex determination. The expression of LG24G004770 (encoding HS6ST 3-B-like) was also significantly higher in female muscles than in male muscles (p < 0.01), indicating other functions related to female growth. ZP3 encoded by LG24G003870 isoform 1 increased the C-terminal transmembrane domain, compared with that encoded by other fish zp3 isoforms, indicating their different functions in sex determination or differentiation. This study provides a foundation for the identification of sex-determining genes in mandarin fish.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.Y.); (L.C.); (B.G.); (Y.L.); (Y.L.); (Y.L.); (L.L.); (Z.Z.); (Y.W.)
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.Y.); (L.C.); (B.G.); (Y.L.); (Y.L.); (Y.L.); (L.L.); (Z.Z.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.Y.); (L.C.); (B.G.); (Y.L.); (Y.L.); (Y.L.); (L.L.); (Z.Z.); (Y.W.)
- Correspondence:
| | - Bin Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.Y.); (L.C.); (B.G.); (Y.L.); (Y.L.); (Y.L.); (L.L.); (Z.Z.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.Y.); (L.C.); (B.G.); (Y.L.); (Y.L.); (Y.L.); (L.L.); (Z.Z.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.Y.); (L.C.); (B.G.); (Y.L.); (Y.L.); (Y.L.); (L.L.); (Z.Z.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.Y.); (L.C.); (B.G.); (Y.L.); (Y.L.); (Y.L.); (L.L.); (Z.Z.); (Y.W.)
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.Y.); (L.C.); (B.G.); (Y.L.); (Y.L.); (Y.L.); (L.L.); (Z.Z.); (Y.W.)
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.Y.); (L.C.); (B.G.); (Y.L.); (Y.L.); (Y.L.); (L.L.); (Z.Z.); (Y.W.)
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (C.Y.); (L.C.); (B.G.); (Y.L.); (Y.L.); (Y.L.); (L.L.); (Z.Z.); (Y.W.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Zhu C, Liu H, Pan Z, Cheng L, Sun Y, Wang H, Chang G, Wu N, Ding H, Zhao H, Zhang L, Yu X. Insights into chromosomal evolution and sex determination of Pseudobagrus ussuriensis (Bagridae, Siluriformes) based on a chromosome-level genome. DNA Res 2022; 29:dsac028. [PMID: 35861402 PMCID: PMC9358014 DOI: 10.1093/dnares/dsac028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022] Open
Abstract
Pseudobagrus ussuriensis is an aquaculture catfish with significant sexual dimorphism. In this study, a chromosome-level genome with a size of 741.97 Mb was assembled for female P. ussuriensis. A total of 26 chromosome-level contigs covering 97.34% of the whole-genome assembly were obtained with an N50 of 28.53 Mb and an L50 of 11. A total of 24,075 protein-coding genes were identified, with 91.54% (22,039) genes being functionally annotated. Based on the genome assembly, four chromosome evolution clusters of catfishes were identified and the formation process of P. ussuriensis chromosomes was predicted. A total of 55 sex-related quantitative trait loci (QTLs) with a phenotypic variance explained value of 100% were located on chromosome 8 (chr08). The QTLs and other previously identified sex-specific markers were located in a sex-determining region of 16.83 Mb (from 6.90 to 23.73 Mb) on chr08, which was predicted as the X chromosome. The sex-determining region comprised 554 genes, with 135 of which being differently expressed between males and females/pseudofemales, and 16 candidate sex-determining genes were screened out. The results of this study provided a useful chromosome-level genome for genetic, genomic and evolutionary studies of P. ussuriensis, and also be useful for further studies on sex-determination mechanism analysis and sex-control breeding of this fish.
Collapse
Affiliation(s)
- Chuankun Zhu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhengjun Pan
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Lei Cheng
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Yanhong Sun
- Wuhan Aquaculture Science Research Institute, Wuhan 430207, China
| | - Hui Wang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Guoliang Chang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Nan Wu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Huaiyu Ding
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Haitao Zhao
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai’an 223300, China
| | - Lei Zhang
- Key Laboratory of Fishery Sustainable Development and Water Environment Protection of Huai’an City, Huai’an Sub Center of the Institute of Hydrobiology, Chinese Academy of Sciences, Huai’an 223002, China
| | - Xiangsheng Yu
- Huai’an Fisheries Technical Guidance Station, Huai’an 223001, China
| |
Collapse
|
7
|
Li P, Chen J, Zhu C, Pan Z, Li Q, Wei H, Wang G, Cheng W, Fu B, Sun Y. DNA Methylation Difference between Female and Male Ussuri Catfish ( Pseudobagrus ussuriensis) in Brain and Gonad Tissues. Life (Basel) 2022; 12:874. [PMID: 35743904 PMCID: PMC9228513 DOI: 10.3390/life12060874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022] Open
Abstract
DNA methylation has been found to be involved in sex determination and differentiation in many aquaculture species. The Ussuri catfish (Pseudobagrus ussuriensis) is a popular aquaculture fish in China with high economic value in which male-biased sex dimorphism was observed in terms of body size and body weight. In this study, DNA methylation-sensitive RAD sequencing (Methyl-RAD) was used to explore the epigenetic difference between adult male and female samples in brain and gonad tissues. In brain tissues, 5,442,496 methylated cytosine sites were found and 9.94% of these sites were from symmetric CCGG or CCWGG sites. Among these sites, 321 differential DNA methylation sites (DMSs) in 171 genes were identified, while in gonad tissues, 4,043,053 methylated cytosines sites were found in total and 11.70% of them were from CCGG or CCWGG. Among these sites, 78 differential DNA methylation sites were found which were located in 64 genes. We also found several sex-determination genes among these differential methylated genes, such as amh, gsdf and hsd11b2 in brain tissues and slco3a1, socs2 and trim47 in gonad tissues. These results provided evidence for understanding the function of DNA methylation in the sex differentiation in Pseudobagrus ussuriensis, which further deepens the relationship between gene regulation and epigenetics.
Collapse
Affiliation(s)
- Pei Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Jian Chen
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Chuankun Zhu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian 223300, China; (C.Z.); (Z.P.)
| | - Zhengjun Pan
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian 223300, China; (C.Z.); (Z.P.)
| | - Qing Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Huijie Wei
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Guiying Wang
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Weiwei Cheng
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Beide Fu
- Ruibiao (Wuhan) Biotechnology Co., Ltd., Wuhan 430074, China;
| | - Yanhong Sun
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| |
Collapse
|
8
|
Teal CN, Coykendall DK, Campbell MR, Eardley DL, Delomas TA, Shira JT, Schill DJ, Bonar SA, Culver M. Sex-specific markers undetected in green sunfish Lepomis cyanellus using restriction-site associated DNA sequencing. JOURNAL OF FISH BIOLOGY 2022; 100:1528-1540. [PMID: 35439326 DOI: 10.1111/jfb.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
We used restriction-site associated DNA sequencing for SNP discovery and genotyping of known-sex green sunfish Lepomis cyanellus DNA samples to search for sex-diagnostic single nucleotide polymorphisms (SNPs) and restriction-site associated sequences present in one sex and absent in the other. The bioinformatic analyses discovered candidate SNPs and sex-specific restriction-site associated sequences that fit patterns of male or female heterogametic sex determination systems. However, when primers were developed and tested, no candidates reliably identified phenotypic sex. The top performing SNP candidate (ZW_218) correlated with phenotypic sex 63.0% of the time and the presence-absence loci universally amplified in both sexes. We recommend further investigations that interrogate a larger fraction of the L. cyanellus genome. Additionally, studies on the effect of temperature and rearing density on sex determination, as well as breeding of sex-reversed individuals, could provide more insights into the sex determination system of L. cyanellus.
Collapse
Affiliation(s)
- Chad N Teal
- Arizona Cooperative Fish and Wildlife Research Unit, School of Natural Resources and the Environment, Tucson, Arizona, USA
| | - D Katharine Coykendall
- Pacific States Marine Fisheries Commission, Eagle Fish Genetics Lab, Eagle, Idaho, USA
- Idaho Department of Fish and Game, Eagle Fish Genetics Lab, Eagle, Idaho, USA
| | - Matthew R Campbell
- Idaho Department of Fish and Game, Eagle Fish Genetics Lab, Eagle, Idaho, USA
| | - Daniel L Eardley
- Pacific States Marine Fisheries Commission, Eagle Fish Genetics Lab, Eagle, Idaho, USA
- Idaho Department of Fish and Game, Eagle Fish Genetics Lab, Eagle, Idaho, USA
| | - Thomas A Delomas
- Pacific States Marine Fisheries Commission, Eagle Fish Genetics Lab, Eagle, Idaho, USA
- Idaho Department of Fish and Game, Eagle Fish Genetics Lab, Eagle, Idaho, USA
| | - James T Shira
- University of Arizona Genetics Core, Tucson, Arizona, USA
| | | | - Scott A Bonar
- US Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, School of Natural Resources and the Environment, University of Arizona, ENR2, Tucson, Arizona, USA
| | - Melanie Culver
- US Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, School of Natural Resources and the Environment, University of Arizona, ENR2, Tucson, Arizona, USA
| |
Collapse
|
9
|
Li XY, Mei J, Ge CT, Liu XL, Gui JF. Sex determination mechanisms and sex control approaches in aquaculture animals. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1091-1122. [PMID: 35583710 DOI: 10.1007/s11427-021-2075-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023]
Abstract
Aquaculture is one of the most efficient modes of animal protein production and plays an important role in global food security. Aquaculture animals exhibit extraordinarily diverse sexual phenotypes and underlying mechanisms, providing an ideal system to perform sex determination research, one of the important areas in life science. Moreover, sex is also one of the most valuable traits because sexual dimorphism in growth, size, and other economic characteristics commonly exist in aquaculture animals. Here, we synthesize current knowledge of sex determination mechanisms, sex chromosome evolution, reproduction strategies, and sexual dimorphism, and also review several approaches for sex control in aquaculture animals, including artificial gynogenesis, application of sex-specific or sex chromosome-linked markers, artificial sex reversal, as well as gene editing. We anticipate that better understanding of sex determination mechanisms and innovation of sex control approaches will facilitate sustainable development of aquaculture.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Mei
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chu-Tian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiao-Li Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
10
|
Shen Y, Wang Q, Wang W, Li Y. Exploration of an XX/XY Sex Determination System and Development of PCR-Based Sex-specific Markers in Procambarus clarkii Based on Next-Generation Sequencing Data. Front Genet 2022; 13:850983. [PMID: 35299953 PMCID: PMC8923706 DOI: 10.3389/fgene.2022.850983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/07/2022] [Indexed: 01/08/2023] Open
Abstract
Many economic crustacean species have sex dimorphisms during their growth. Exploring the sex determination system and developing sex-specific molecular marker(s) are very helpful for carrying out sex control breeding, and next-generation sequencing has been used as an efficient way to explore them in recent years. In this study, first, the genetic sex determination system of P. clarkii was explored as an XX/XY system by analyzing the 2b-RAD sequencing data. Furthermore, DNA samples of male and female individuals from a P. clarkii family were pooled separately for whole-genome resequencing. Based on the data of whole-genome resequencing, the 9,163 male- and female-specific bias sites with higher feasibility were obtained based on the assumption of the XX/XY sex determination system, and four sites were selected to design the sex-specific marker primers. One efficient sex-specific marker was identified with a sex discrimination rate of 99.49% (195/196) when applied to five different geographical groups with 196 individuals. The results of this study would provide a foundation for the realization of P. clarkii sex control and could provide some reference for investigating the sex determination system and sex molecular marker(s) of other crustacean species based on next-generation sequencing data.
Collapse
|
11
|
Yan H, Shen X, Jiang J, Zhang L, Yuan Z, Wu Y, Liu Q, Liu Y. Gene Expression of Takifugu rubripes Gonads During AI- or MT-induced Masculinization and E2-induced Feminization. Endocrinology 2021; 162:6218011. [PMID: 33831176 DOI: 10.1210/endocr/bqab068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 01/27/2023]
Abstract
Elucidating the global molecular changes that occur during aromatase inhibitor (AI)- or 17α-methyltestosterone (MT)-induced masculinization and estradiol-17β (E2)-induced feminization is critical to understanding the roles that endocrine and genetic factors play in regulating the process of sex differentiation in fish. Here, fugu larvae were treated with AI (letrozole), MT, or E2 from 25 to 80 days after hatching (dah), and gonadal transcriptomic analysis at 80 dah was performed. The expression of dmrt1, gsdf, foxl2, and other key genes (star, hsd3b1, cyp11c1, cyp19a1a, etc.) involved in the steroid hormone biosynthesis pathway were found be altered. The expression of dmrt1, gsdf, cyp19a1a, and foxl2 was further verified by quantitative polymerase chain reaction. In the control group, the expression of dmrt1 and gsdf was significantly higher in XY larvae than in XX larvae, while the expression of foxl2 and cyp19a1a was significantly higher in XX larvae than in XY larvae (P < .05). AI treatment suppressed the expression of foxl2 and cyp19a1a, and induced the expression of dmrt1 and gsdf in XX larvae. MT treatment suppressed the expression of foxl2, cyp19a1a, dmrt1, and gsdf in XX larvae. E2 treatment suppressed the expression of dmrt1 and gsdf, but did not restore the expression of foxl2 and cyp19a1a in XY larvae. The shared response following AI, MT, and E2 treatment suggested that these genes are essential for sex differentiation. This finding offers some insight into AI or MT-induced masculinization, and E2-induced femininization in fugu.
Collapse
Affiliation(s)
- Hongwei Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xufang Shen
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
- College of Life Sciences, Liaoning Normal university, Dalian, Liaoning 116000, China
| | - Jieming Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, 116023, Dalian, Liaoning, China
| | - Zhen Yuan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
| | - Yumeng Wu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, 116023, Dalian, Liaoning, China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, 116023, Dalian, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, 116023, Dalian, Liaoning, China
| |
Collapse
|
12
|
Cui Z, Zhang J, Sun Z, Liu B, Zhao C, Chang Y. Identification of Sex-Specific Markers Through 2b-RAD Sequencing in the Sea Urchin ( Mesocentrotus nudus). Front Genet 2021; 12:717538. [PMID: 34422019 PMCID: PMC8375557 DOI: 10.3389/fgene.2021.717538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Sex-specific markers play an important role in revealing sex-determination mechanism. Sea urchin (Mesocentrotus nudus) is an economically important mariculture species in several Asian countries and its gonads are the sole edible parts for people. However, growth rate and immunocompetence differ by sex in this species, sex-specific markers have not been identified, and the sex-determination mechanism of sea urchin remains undetermined. In this study, type IIB endonuclease restriction-site associated DNA sequencing (2b-RAD-seq) and a genome survey of M. nudus were performed, and three female-specific markers and three female heterogametic single nucleotide polymorphism (SNP) loci were identified. We validated these sex-specific markers via PCR amplification in a large number of individuals, including wild and artificially bred populations. Several open reading frames (ORFs) were predicted, although there are no potential genes known for sex determination and sex differentiation within the scaffold in which the sex-specific markers are located. Importantly, the female-specific sequences and female heterozygous SNP loci indicate that a female heterogametic and male homogametic ZW/ZZ sex-determination system should exist in M. nudus. The results provide a solid basis for revealing the sex-determination mechanism of this species, and open up new possibilities for developing sex-control breeding in sea urchin.
Collapse
Affiliation(s)
- Zhouping Cui
- Key Laboratory of Mariculture and Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Jian Zhang
- Key Laboratory of Mariculture and Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,School of Life Science, Liaoning Normal University, Dalian, China
| | - Zhihui Sun
- Key Laboratory of Mariculture and Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Bingzheng Liu
- Key Laboratory of Mariculture and Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Chong Zhao
- Key Laboratory of Mariculture and Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture and Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
13
|
Xing TF, Li YL, Liu JX. Female-specific genomic regions and molecular sex identification of the clearhead icefish (Protosalanx hyalocranius). BMC Genomics 2021; 22:495. [PMID: 34215185 PMCID: PMC8254354 DOI: 10.1186/s12864-021-07830-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/16/2021] [Indexed: 01/29/2023] Open
Abstract
Background The clearhead icefish, Protosalanx hyalocranius, is an economically important fishery species in China. Since 1980s, P. hyalocranius was widely introduced into lakes and reservoirs of northern China for aquaculture. However, the lack of a rapid and cost-effective sex identification method based on sex specific genetic markers has hindered study on sex determination mechanisms and breeding applications. Results Female-specific genomic regions were discovered by comparing whole genome re-sequencing data of both males and females. Two female-specific genomic regions larger than 50 bp were identified, and one (598 bp) contained a putative FOXI gene, which was paralogous to another FOXI gene with sex-associated SNPs. The two FOXI sequences displayed significant length difference with nine deletions of total length of 230 bp. This deletion-type structural variation could be easily and efficiently detected by traditional PCR and agarose gel electrophoresis with one 569 bp band for males and two bands (569 and 339 bp) for females, which were validated in 50 females and 40 males with known phenotypic sexes. Conclusions The results provided structural genomic evidence for the ZZ/ZW sex determination system in P. hyalocranius discovered in our previous study with association analysis of SNPs. Moreover, the female-specific markers and rapid and cost-effective PCR-based genetic sex identification method should have applications in further studies of sex determination mechanism for this species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07830-9.
Collapse
Affiliation(s)
- Teng-Fei Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China. .,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China.
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| |
Collapse
|
14
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
15
|
Wen M, Feron R, Pan Q, Guguin J, Jouanno E, Herpin A, Klopp C, Cabau C, Zahm M, Parrinello H, Journot L, Burgess SM, Omori Y, Postlethwait JH, Schartl M, Guiguen Y. Sex chromosome and sex locus characterization in goldfish, Carassius auratus (Linnaeus, 1758). BMC Genomics 2020; 21:552. [PMID: 32781981 PMCID: PMC7430817 DOI: 10.1186/s12864-020-06959-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Goldfish is an important model for various areas of research, including neural development and behavior and a species of significant importance in aquaculture, especially as an ornamental species. It has a male heterogametic (XX/XY) sex determination system that relies on both genetic and environmental factors, with high temperatures being able to produce female-to-male sex reversal. Little, however, is currently known on the molecular basis of genetic sex determination in this important cyprinid model. Here we used sequencing approaches to better characterize sex determination and sex-chromosomes in an experimental strain of goldfish. RESULTS Our results confirmed that sex determination in goldfish is a mix of environmental and genetic factors and that its sex determination system is male heterogametic (XX/XY). Using reduced representation (RAD-seq) and whole genome (pool-seq) approaches, we characterized sex-linked polymorphisms and developed male specific genetic markers. These male specific markers were used to distinguish sex-reversed XX neomales from XY males and to demonstrate that XX female-to-male sex reversal could even occur at a relatively low rearing temperature (18 °C), for which sex reversal has been previously shown to be close to zero. We also characterized a relatively large non-recombining region (~ 11.7 Mb) on goldfish linkage group 22 (LG22) that contained a high-density of male-biased genetic polymorphisms. This large LG22 region harbors 373 genes, including a single candidate as a potential master sex gene, i.e., the anti-Mullerian hormone gene (amh). However, no sex-linked polymorphisms were detected in the coding DNA sequence of the goldfish amh gene. CONCLUSIONS These results show that our goldfish strain has a relatively large sex locus on LG22, which is likely the Y chromosome of this experimental population. The presence of a few XX males even at low temperature also suggests that other environmental factors in addition to temperature could trigger female-to-male sex reversal. Finally, we also developed sex-linked genetic markers, which will be important tools for future research on sex determination in our experimental goldfish population. However, additional work would be needed to explore whether this sex locus is conserved in other populations of goldfish.
Collapse
Affiliation(s)
- Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
- INRAE, LPGP, 35000, Rennes, France
| | - Romain Feron
- INRAE, LPGP, 35000, Rennes, France
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Qiaowei Pan
- INRAE, LPGP, 35000, Rennes, France
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | | | | | | | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Cedric Cabau
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Margot Zahm
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Laurent Journot
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | - Manfred Schartl
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | | |
Collapse
|
16
|
Zhang B, Zhao N, Peng K, He X, Chen CX, Liu H, Liu K, Jia L, Bao B. A combination of genome-wide association study screening and SNaPshot for detecting sex-related SNPs and genes in Cynoglossus semilaevis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100711. [PMID: 32683285 DOI: 10.1016/j.cbd.2020.100711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/16/2022]
Abstract
Chinese tongue sole (Cynoglossus semilaevis) males and females exhibit great differences in growth rate and appearance. The species is heterogametic (ZW/ZZ) and has sex-reversed "pseudomales" that are genetically female and physiologically male. In this study, we identified eight sex-specific single nucleotide polymorphism (SNP) markers for the sex identification of C. semilaevis by using a combination of genome-wide association study (GWAS) screening and SnaPshot validation. Candidate SNPs were screened using genotyping by sequencing to perform GWAS of the differential SNPs between the sexes of C. semilaevis. The SNP loci were amplified using a multiplex PCR system and detected via SNaPshot, which enables multiplexing of up to 30-40 SNPs in a single assay and ensures high accuracy of the results. The molecular markers detected in our study were used to successfully identify normal males and pseudomales from 45 caught and 40 cultured C. semilaevis specimens. Linkage disequilibrium analysis showed that the eight SNP loci were related to each other, with a strong linkage. Moreover, we investigated the expression of prdm6 mRNA containing a missense SNP and confirmed that the gene is differentially expressed in the gonads of the different sexes of C. semilaevis; the expression of prdm6 mRNA was significantly higher in the males than in the females and pseudomales. This means prdm6 may be related to sex differentiation in C. semilaevis.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Tianjin Fisheries Research Institute, Tianjin, China
| | - Na Zhao
- Tianjin Medicine Biotechnology Co, Ltd, Tianjin, China
| | - Kangkang Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Chun Xiu Chen
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Hao Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Kefeng Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
17
|
Shen F, Long Y, Li F, Ge G, Song G, Li Q, Qiao Z, Cui Z. De novo transcriptome assembly and sex-biased gene expression in the gonads of Amur catfish (Silurus asotus). Genomics 2020; 112:2603-2614. [PMID: 32109564 DOI: 10.1016/j.ygeno.2020.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 11/28/2022]
Abstract
Amur catfish is extensively distributed and cultured in Asian countries. Despite of economic importance, the genomic information of this species remains limited. A reference transcriptome of Amur catfish was assembled and the sex-biased gene expression in the gonads was characterized using RNA-sequencing. The assembled transcriptome of Amur catfish consisted of 74,840 transcripts. The N50, mean length and max length of transcripts are 1970, 1235 and 16,748 bp. Putative sex-specific transcripts were identified and sex-specific expression of the representative genes was verified by RT-PCR. Differential expression analysis identified 5401 ovary-biased and 5618 testis-biased genes. The ovary-biased genes were mainly enriched in pathways such as RNA transport and ribosome biogenesis in eukaryotes. The testis-biased genes were enriched in calcium signaling and cytokine-cytokine receptor interaction, etc. Our data provide a valuable genomic resource for further investigating the genetic basis of sex determination, sex differentiation and sexual dimorphism of catfish.
Collapse
Affiliation(s)
- Fangfang Shen
- Fisheries College, Henan Normal University, Xinxiang 453007, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fengyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhigang Qiao
- Fisheries College, Henan Normal University, Xinxiang 453007, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
18
|
Chen F, Li XY, Zhou L, Yu P, Wang ZW, Li Z, Zhang XJ, Wang Y, Gui JF. Stable Genome Incorporation of Sperm-derived DNA Fragments in Gynogenetic Clone of Gibel Carp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:54-66. [PMID: 31902020 DOI: 10.1007/s10126-019-09930-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
How unisexual animals eliminate deleterious mutations to avoid dead ends is one of the most interesting puzzles in evolutionary genetics. Incorporation of microchromosomes derived from exogenous sperm had been observed in gynogenetic animals, but little is known about their detailed process and hereditary fate. Here, we show a stable genome incorporation case in an artificial clone F of gynogenetic gibel carp (Carassius gibelio). A total of 12 exogenous DNA fragments were screened through a read depth-dependent comparison strategy and confirmed to be specific to the clone F and the paternal blunt snout bream (Megalobrama amblycephala Yin) by SCAR (sequence characterized amplified regions) marker detection. Moreover, these sperm-derived DNA fragments were not detected in some samples in early gynogenetic generations, but they were found to exist in all examined individuals through artificial gynogenetic selections of 13 generations, implying that they might have stably incorporated into the genome of clone F. Furthermore, chromosome localization and sequence characterization indicate that the largest fragment CgA22_34 is derived from blunt snout bream non-LTR retrotransposon and durably incorporated into only one of three homologous chromosomes of gibel carp clone F. Our results suggest that the incorporated sperm-derived DNA fragments by allogynogenesis should increase genetic diversity and introduce new traits into unisexual animals which will benefit genetic breeding of gibel carp. During the process, transposable elements (TEs) may play significant roles in shaping the genome structures. Simultaneously, the incorporated DNA fragments are able to be used as genetic markers to perform selective breeding programs in aquaculture practices of gibel carp.
Collapse
Affiliation(s)
- Fan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Wu JJ, Zhou YL, Wang ZW, Li GH, Jin FP, Cui LL, Gao HT, Li XP, Zhou L, Gui JF. Comparative Transcriptome Analysis Reveals Differentially Expressed Genes and Signaling Pathways Between Male and Female Red-Tail Catfish (Mystus wyckioides). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:463-474. [PMID: 30941640 DOI: 10.1007/s10126-019-09894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Sexual dimorphism is widespread in fish species. The red-tail catfish (Mystus wyckioides) is a commercially important catfish in the lower reaches of the Lancang River and the Mekong basin, and it shows a growth advantage in males. Here, RNA-seq was for the first time used to explore the gene expression difference between the sexes in the hypothalamus and pituitary of red-tail catfish, respectively. In the hypothalamus, 5732 and 271 unigenes have significantly higher and lower expressions, respectively, in males compared with females. KEGG analysis showed that 212 DEGs were annotated to 216 signaling pathways, and enrichment analysis suggested different levels of cAMP and glutamatergic synapse signaling between male and female hypothalami and some of the DEGs appear involved in gonad development and growth. In the pituitary, we found only 19 differentially expressed unigenes, which were annotated to 32 signaling pathways, most of which play important roles in gonad development.
Collapse
Affiliation(s)
- Jun-Jie Wu
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Guang-Hua Li
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Fang-Peng Jin
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Li-Li Cui
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Hai-Tao Gao
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Xin-Ping Li
- Xishuangbanna Native Fish Research and Breeding Center, Xishuangbanna, 666100, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
20
|
Zhang B, Zhao N, Jia L, Peng K, Che J, Li K, He X, Sun J, Bao B. Seminal Plasma Exosomes: Promising Biomarkers for Identification of Male and Pseudo-Males in Cynoglossus semilaevis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:310-319. [PMID: 30863906 DOI: 10.1007/s10126-019-09881-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
In mammals, small RNAs enclosed in exosomes have been identified as appropriate signatures for disease diagnosis. However, there is limited information on exosomes derived from seminal plasma, and few studies have reported analyzed the composition of exosomes and enclosed small RNAs in fish. The half-smooth tongue sole (Cynoglossus semilaevis) is an economically important fish for aquaculture, and it exhibits sexual dimorphism: the female gender show higher growth rates and larger body sizes than males. Standard karyotype analysis and artificial gynogenesis tests have revealed that this species uses heterogametic sex determination (ZW/ZZ), and so-called sex-reversed pseudo-males exist. In this study, we successfully identified exosomes in the seminal plasma of C. semilaevis; to the best of our knowledge, this is the first report of exosomes in fish seminal plasma. Analysis of the nucleotide composition showed that miRNAs were dominant in the exosomes, and the miRNAs were sequenced and compared to identify signature miRNAs as sexual biomarkers. Moreover, target genes of the signature miRNAs were predicted by sequence matching and annotation. Finally, four miRNAs (dre-miR-141-3P, dre-miR-10d-5p, ssa-miR-27b-3p, and ssa-miR-23a-3p) with significant differential expression in the males and pseudo-males were selected from the signature candidate miRNAs as markers for sex identification, and their expression profiles were verified using real-time quantitative PCR. Our findings could provide an effective detection method for sex differentiation in fish.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Na Zhao
- Tianjin Sheng Fa Biotechnology Co, Ltd, Tianjin, China
| | - Lei Jia
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Kang Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinyuan Che
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kunming Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoxu He
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Jinsheng Sun
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
21
|
Genome-wide RAD sequencing to identify a sex-specific marker in Chinese giant salamander Andrias davidianus. BMC Genomics 2019; 20:415. [PMID: 31122206 PMCID: PMC6533744 DOI: 10.1186/s12864-019-5771-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/03/2019] [Indexed: 11/15/2022] Open
Abstract
Background Chinese giant salamander Andrias davidianus is an endangered species. The success of artificial breeding provides a useful way to protect this species. However, the method to identify the sex and mechanism of sex determination were unclear which hinder the improvement of the artificial breeding. Detection of a sex specific marker provides an effective approach to identify genetic sex and investigate the sex determination mechanism. Results We used restriction-site-associated DNA (RAD) sequencing to isolate a sex-specific genetic marker in A. davidianus to expand knowledge of the sex determination mechanism. Four male and four female specimens were subjected to RAD sequencing, which generated 934,072,989 reads containing approximately 134.4 Gb of sequences. The first round of comparison of the assembled sequence against the opposite sex raw reads revealed 19,097 female and 17,994 male unmatched sequences. Subsequently, 19,097 female sequences were subjected to a BLAST search against male genomic data, which revealed 308 sequences unmapped to the male genome. One hundred of these were randomly selected and validated by PCR in five male and five female specimens, and four putative sex-specific sequences were produced. Further validation was performed by PCR in another 24 females and 24 males, and all female individuals exhibited the expected specific bands, while the males did not. To apply the sex-specific marker, three specimens reversed from genetic female to physiological male were found in a group exposed to elevated temperature, and 13 individuals reversed from genetic male to physiological female were obtained in a 17β-estradiol exposed group. Conclusion This is the first report of a sex-specific marker in A. davidianus and may have potential for elucidation of its sex determination mechanism and, hence, its conservation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5771-5) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Development and Validation of Sex-Specific Markers in Pelodiscus Sinensis Using Restriction Site-Associated DNA Sequencing. Genes (Basel) 2019; 10:genes10040302. [PMID: 30991756 PMCID: PMC6523797 DOI: 10.3390/genes10040302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022] Open
Abstract
The sex of an animal influences its economic traits, especially in species displaying sexual dimorphism. The Chinese soft-shelled turtle, Pelodiscus sinensis, is an economically important aquatic species that shows significant male sexual dimorphism, with a large body size, faster growth, a thick and wide calipash, and lower body fat. In this study, ten male and ten female turtles were subjected to restriction site-associated DNA sequencing (RAD-seq) using the Hi-Seq 4000 sequencing platform to isolate female-specific DNA fragments. We identified 5967 bp and 6532 bp fragments using genome walking. Three female-specific markers designed from these two fragments were confirmed to separate the sexes of Pelodiscus sinensis perfectly. One of the female-specific markers showed dosage association in female and male individuals. Individuals from different populations (n = 296) were used to validate that the female-specific markers could identify the genetic sex of Pelodiscus sinensis with 100% accuracy. The results of the present study demonstrated that RAD-seq was useful to develop sex-related markers in animals, and verified that the sex determination system of Pelodiscus sinensis belonged to the ZZ/ZW heterogametic system. Importantly, the developed markers could lead to a method for sex-controlled breeding in the Chinese soft-shelled turtle.
Collapse
|
23
|
Ma KY, Yu SH, Du YX, Feng SQ, Qiu LJ, Ke DY, Luo MZ, Qiu GF. Construction of a Genomic Bacterial Artificial Chromosome (BAC) Library for the Prawn Macrobrachium rosenbergii and Initial Analysis of ZW Chromosome-Derived BAC Inserts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:206-216. [PMID: 30632018 DOI: 10.1007/s10126-018-09873-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Knowledge on sex determination has proven valuable for commercial production of the prawn Macrobrachium rosenbergii due to sex dimorphism of the male and female individuals. Previous studies indicated that prawn sex is determined by a ZW-ZZ chromosomal system, but no genomic information is available for the sex chromosome. Herein, we constructed a genomic bacterial artificial chromosome (BAC) library and identified the ZW-derived BAC clones for initial analysis of the sex chromosomal DNA sequence. The arrayed BAC library contains 200,448 clones with average insert size of 115.4 kb, corresponding to ∼ 4× coverage of the estimated 5.38 Gb genome. Based on a short female-specific marker, a Z- and a W-fragment were retrieved with the genomic walking method. Screening the BAC library using a ZW-specific marker as probe resulted in 12 positive clones. From these, a Z-derived (P331M17) and a W-derived (P122G2) BAC clones were randomly selected and sequenced by PacBio method. We report the construction of a large insert, deep-coverage, and high-quality BAC library for M. rosenbergii that provides a useful resource for positional cloning of target genes, genomic organization, and comparative genomics analysis. Our study not only confirmed the ZW/ZZ system but also discovered sex-linked genes on ZW chromosomes for the first time, contributing to a comprehensive understanding of the genomic structure of sex chromosomes in M. rosenbergii.
Collapse
Affiliation(s)
- Ke-Yi Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Shu-Hui Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Yu-Xin Du
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Shi-Qing Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Liang-Jie Qiu
- College of Life Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Dai-Yi Ke
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Mei-Zhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Gao-Feng Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China.
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New Area, 201306, Shanghai, People's Republic of China.
| |
Collapse
|
24
|
Fang S, Zhang Y, Shi X, Zheng H, Li S, Zhang Y, Fazhan H, Waiho K, Tan H, Ikhwanuddin M, Ma H. Identification of male-specific SNP markers and development of PCR-based genetic sex identification technique in crucifix crab (Charybdis feriatus) with implication of an XX/XY sex determination system. Genomics 2019; 112:404-411. [PMID: 30851358 DOI: 10.1016/j.ygeno.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Abstract
In this study, we first identified male-specific SNP markers using restriction site-associated DNA sequencing, and further developed a PCR-based sex identification technique for Charybdis feriatus. A total of 296.96 million clean reads were obtained, with 114.95 and 182.01 million from females and males. After assembly and alignment, 10 SNP markers were identified being heterozygous in males but homozygous in females. Five markers were further confirmed to be male-specific in a large number of individuals. Moreover, two male-specific sense primers and a common antisense primer were designed, using which, a PCR-based genetic sex identification method was successfully developed and used to identify the sex of 103 individuals, with a result of 49 females and 54 males. The presence of male-specific SNP markers suggests an XX/XY sex determination system for C. feriatus. These findings should be helpful for better understanding sex determination mechanism, and drafting artificial breeding program in crustaceans.
Collapse
Affiliation(s)
- Shaobin Fang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Xi Shi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hanafiah Fazhan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Khor Waiho
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Huaqiang Tan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Mhd Ikhwanuddin
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
25
|
Shi X, Waiho K, Li X, Ikhwanuddin M, Miao G, Lin F, Zhang Y, Li S, Zheng H, Liu W, Aweya JJ, Azmie G, Baylon JC, Quinitio ET, Ma H. Female-specific SNP markers provide insights into a WZ/ZZ sex determination system for mud crabs Scylla paramamosain, S. tranquebarica and S. serrata with a rapid method for genetic sex identification. BMC Genomics 2018; 19:981. [PMID: 30594128 PMCID: PMC6311006 DOI: 10.1186/s12864-018-5380-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/16/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mud crabs, Scylla spp., are commercially important large-size marine crustaceans in the Indo-West Pacific region. As females have the higher growth rate and economic value, the production of all female stocks is extremely essential in aquaculture. However, the sex determination mechanism is still unclear. Development of sex-specific genetic markers based on next-generation sequencing proved to be an effective tool for discovering sex determination system in various animals. RESULTS Restriction-site associated DNA sequencing (RAD-seq) was employed to isolate sex-specific SNP markers for S. paramamosain. A total of 335.6 million raw reads were obtained from 20 individuals, of which 204.7 million were from 10 females and 130.9 million from 10 males. After sequence assembly and female-male comparison, 20 SNP markers were identified to be sex-specific. Furthermore, ten SNPs in a short sequence (285 bp) were confirmed heterozygous in females and homozygous in males in a large population by PCR amplification and sequencing. Subsequently, a female-specific primer was successfully designed according to the female-specific nucleotide which could amplify an expected band from females but not from males. Thus, a rapid and effective method for molecular sexing in S. paramamosain was developed, meanwhile, this method could successfully identify the sex of S. tranquebarica and S. serrata. Finally, nine and four female-specific SNP markers were detected in S. tranquebarica and S. serrata, respectively. CONCLUSIONS Sex-specific SNP markers were firstly identified in crab species and showed female heterogamety and male homogamety, which provided strong genetic evidence for a WZ/ZZ sex determination system in mud crabs S. paramamosain, S. tranquebarica and S. serrata. These findings will lay a solid foundation for the study of sex determination mechanism, sex chromosome evolution, and the development of mono-sex population in crustaceans.
Collapse
Affiliation(s)
- Xi Shi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063 China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
| | - Khor Waiho
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063 China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063 China
| | - Xincang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090 China
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | - Guidong Miao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063 China
| | - Fan Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063 China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063 China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063 China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063 China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063 China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063 China
| | - Ghazali Azmie
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | - Juliana C. Baylon
- Division of Biological Sciences, College of Arts and Sciences, University of the Philippines, Visayas, 5023 Miagao, Philippines
| | - Emilia T. Quinitio
- Aquaculture Department, Southeast Asian Fisheries Development Center, 5021 Tigbauan, Philippines
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063 China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
| |
Collapse
|
26
|
Yan H, Shen X, Cui X, Wu Y, Wang L, Zhang L, Liu Q, Jiang Y. Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in Takifugu rubripes gonad at the early stage of sex differentiation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1275-1290. [PMID: 29777416 DOI: 10.1007/s10695-018-0519-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Quantifying the expression of mRNAs in the gonads at the critical stage of molecular sex differentiation stage might help to clarify the regulatory network during early sex differentiation and provide new information on the role of sex-related genes in gonadal function. In this study, transcriptomic analysis of sex-related genes expression profiles in fugu gonads at 60 and 90 days after hatching (dah) was conducted firstly, and a total of 112,504,991 clean reads, encompassing 28.35 Gb of sequences were retrieved. Twenty-three thousand eight hundred ten genes were found to be expressed in juvenile fugu gonads, and we mainly focused on the differentially expressed genes that have the potential to be involved in the gonadal sex differentiation. For 60-dah juveniles, we identified 1014 genes that were upregulated in the ovary and 1570 that were upregulated in the testis. For 90-dah juveniles, we identified 1287 genes that were upregulated in the ovary and 1500 that were upregulated in the testis. The dimorphic expression patterns of 15 genes in gonads at 30 and 40 dah were further investigate using qPCR. Cyp11b and star were expressed at higher levels in XY than in XX, while cyp11a1 and cyp19a1a were expressed at higher levels in XX than in XY at 30 dah. At 40 dah, the levels of gsdf, dmrt1, dmrt3, cyp11c1, star, and hsd3b expression were higher in XY, while the levels of foxl2, cyp19a1a, wnt9b, and foxD4 expression were higher in XX. Sox9, cyp11a1, cyp17a1, cyp17a2, and nr5a2 were expressed at similar levels in XX and XY at 40 dah. This is the first report of gonadal transcriptome of fugu at early sex differentiation stage, and our results provide an archive for further study on molecular mechanism underlying sex differentiation in this species.
Collapse
Affiliation(s)
- Hongwei Yan
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xufang Shen
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xin Cui
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Yumeng Wu
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Lianshun Wang
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Lei Zhang
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Qi Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China.
| | - Yusheng Jiang
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| |
Collapse
|
27
|
Chen Y, Liu Y, Gong Q, Lai J, Song M, Du J, Deng X. Gonadal transcriptome sequencing of the critically endangered Acipenser dabryanus to discover candidate sex-related genes. PeerJ 2018; 6:e5389. [PMID: 30065900 PMCID: PMC6065465 DOI: 10.7717/peerj.5389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023] Open
Abstract
Background Acipenser dabryanus, an endemic Chinese species, has been listed as a first-class protected animal in China. Sturgeons are among the oldest and most primitive group of existing fish in the world and occupy a special place in the evolutionary history of fish. Thus, a study of the reproduction and sex differentiation of sturgeon will be of great value for fish as well as the whole vertebrate group. Methods In this study, we conducted comparative analysis of the testes and ovaries transcriptomes of A. dabryanus to screen for sex-differentiation and sexual development-related genes. Results The transcriptome sequencing of six cDNA libraries generated 265 million clean reads, encompassing 79 Gb of sequences. The N50 and mean length of the identified 91,375 unigenes were 1,718 and 989 bp, respectively. A total of 6,306, 9,961, 13,170, 15,484, and 23,588 unigenes were annotated in the clusters of orthologous groups, gene ontology categories, Kyoto Encyclopedia of Genes and Genomes Pathway, euKaryotic orthologous groups, and NCBI non-redundant protein databases, respectively. A total of 5,396 differentially expressed genes were found between the two sexes, with 1,938 predicted to be up-regulated in ovaries and 3,458 in testes. A total of 73 candidate genes known to be involved in sex differentiation and sexual development were searched in the transcriptome of A. dabryanus of which 52 showed significant similarity. We highlighted six genes that are differentially expressed between the two sexes and may play important roles in sex differentiation and gonad maintenance. In addition, 24,271 simple sequence repeats (SSRs) and 550,519 single-nucleotide polymorphisms (SNPs) were detected. Discussion This work represents the first transcriptome study comparing the ovary and testis in A. dabryanus. The putative differentially expressed genes between the gonads provide an important source of information for further study of the sex-differentiation related genes and the sex-differentiation mechanism in sturgeons. The SSRs or SNPs identified in this study will be helpful in the discovery of sex-related markers in A. dabryanus.
Collapse
Affiliation(s)
- Yeyu Chen
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| | - Ya Liu
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| | - Quan Gong
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| | - Jiansheng Lai
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| | - Mingjiang Song
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| | - Jun Du
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| | - Xiaochuan Deng
- The Sichuan Academy of Agricultural Sciences, The Fishery Institute, Chengdu, China
| |
Collapse
|
28
|
Liu H, Pang M, Yu X, Zhou Y, Tong J, Fu B. Sex-specific markers developed by next-generation sequencing confirmed an XX/XY sex determination system in bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix). DNA Res 2018; 25:4791395. [PMID: 29315393 PMCID: PMC6014435 DOI: 10.1093/dnares/dsx054] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Sex-specific markers are powerful tools for identifying sex-determination system in various animals. Bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix) are two of the most important edible fish in Asia, which have a long juvenility period that can lasts for 4-5 years. In this study, we found one sex-specific marker by next-generation sequencing together with bioinformatics analysis in bighead carp. The male-specific markers were used to perform molecular sexing in the progenies of artificial gynogenetic diploids and found all progenies (n = 160) were females. Meanwhile, around 1 : 1 sex ratio was observed in a total of 579 juvenile offspring from three other families. To further extend the male-specific region, we performed genome walking and got a male-specific sequence of 8,661 bp. Five pairs of primers were designed and could be used to efficiently distinguish males from females in bighead carp and silver carp. The development of these male-specific markers and results of their molecular sexing in different populations provide strong evidence for a sex determination system of female homogametry or male heterogametry (XX/XY) in bighead carp and silver carp. To the best of our knowledge, this is the first report of effective sex-specific markers in these two large carp species.
Collapse
Affiliation(s)
- Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
29
|
An NGS-based approach for the identification of sex-specific markers in snakehead ( Channa argus). Oncotarget 2017; 8:98733-98744. [PMID: 29228723 PMCID: PMC5716763 DOI: 10.18632/oncotarget.21924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022] Open
Abstract
We described a next generation sequencing (NGS)-based approach to identify sex-specific markers and subsequently determine whether a species has male or female heterogamety. To test the accuracy of this technique, we examined the snakehead (Channa argus), which is economically important freshwater fish in China. Males grow faster than females, and there is significant interest in developing methods to skew breeding towards all-males to increase biomass yields. NGS was conducted on DNAs of individual female and male, the male reads were spitted into 60 bp K-mers and aligned to the female reference genome assembled by female reads, unaligned male K-mers-60 were kept in next filter process. Meanwhile, DNA sample of 48 females was pooled and sequenced, this data was further used to filter out the previous unaligned male K-mers-60. Hence, numbers of candidate Y chromosome-specific sequences were screened out, their sex-specificity were validated in wild snakeheads through PCR amplification. Finally, three Y chromosome-specific fragments (Contig-275834, Contig-359642, and Contig-418354) were identified, and specific primers were obtained to distinguish the sex of snakehead. Additionally, a pair of primers of Contig-275834 (275834X/Y-F and 275834X/Y-R) was exploited to distinguish XX females, XY males, and YY super-males, whose amplification products of different lengths were produced for different sexes. Therefore, our work demonstrated the ability of NGS data in identification of sex-specific markers, and the pipeline adopted in our study could be applied in any species of sex differentiation. Furthermore, the sex-specific markers have tremendous potential for improving the efficiency of all-male breeding practices in snakehead.
Collapse
|
30
|
Pan ZJ, Zhu CK, Wang H, Zhou FJ, Qiang XG. Gonadal morphogenesis and sex differentiation in cultured Ussuri catfish Tachysurus ussuriensis. JOURNAL OF FISH BIOLOGY 2017; 91:866-879. [PMID: 28744861 DOI: 10.1111/jfb.13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to investigate the optimal developmental time to perform sex reversal in Ussuri catfish Tachysurus ussuriensis, to develop monosex breeding in aquaculture. Systematic observations of gonadal sex differentiation of P. ussiriensis were conducted. The genital ridge formed at 9 days post fertilization (dpf) and germ cells begin to proliferate at 17 dpf. The ovarian cavity began forming on 21 dpf and completed by 25 dpf while presumptive testis remained quiescent. The primary oocytes were at the chromatin nucleolus stage by 30 dpf, the peri-nucleolus stage by 44 dpf and the cortical alveoli stage by 64 dpf. The germinal vesicle migrated towards the animal pole (polarization) at 120 dpf. In presumptive testis, germ cells entered into mitosis and blood vessels appeared in the proximal gonad on 30 dpf. The efferent duct anlage appeared on 36 dpf and formation of seminal lobules with spermatogonia and lobules interstitium occurred at 120 dpf. Therefore, gonadal sex differentiation occurred earlier in females than in males, with the histological differentiation preceding cytologic differentiation in T. ussuriensis. This indicates that undifferentiated gonads directly differentiate into ovary or testis between 17 and 21 dpf and artificial induction of sexual reversal by oral steroid administration must be conducted before 17 dpf.
Collapse
Affiliation(s)
- Z J Pan
- School of Life Science, Huaiyin Normal University, Huaian, 223300, China
| | - C K Zhu
- School of Life Science, Huaiyin Normal University, Huaian, 223300, China
| | - H Wang
- School of Life Science, Huaiyin Normal University, Huaian, 223300, China
| | - F J Zhou
- Huaian Fisheries Research Institute, Jiangsu Province, Huaian, 223001, China
| | - X G Qiang
- Huaian Fisheries Research Institute, Jiangsu Province, Huaian, 223001, China
| |
Collapse
|
31
|
Yu Y, Zhang X, Yuan J, Wang Q, Li S, Huang H, Li F, Xiang J. Identification of Sex-determining Loci in Pacific White Shrimp Litopeneaus vannamei Using Linkage and Association Analysis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:277-286. [PMID: 28508952 DOI: 10.1007/s10126-017-9749-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The Pacific white shrimp Litopenaeus vannamei is a predominant aquaculture shrimp species in the world. Like other animals, the L. vannamei exhibited sexual dimorphism in growth trait. Mapping of the sex-determining locus will be very helpful to clarify the sex determination system and further benefit the shrimp aquaculture industry towards the production of mono-sex stocks. Based on the data used for high-density linkage map construction, linkage-mapping analysis was conducted. The sex determination region was mapped in linkage group (LG) 18. A large region from 0 to 21.205 cM in LG18 showed significant association with sex. However, none of the markers in this region showed complete association with sex in the other populations. So an association analysis was designed using the female parent, pool of female progenies, male parent, and pool of male progenies. Markers were de novo developed and those showing significant differences between female and male pools were identified. Among them, three sex-associated markers including one fully associated marker were identified. Integration of linkage and association analysis showed that the sex determination region was fine-mapped in a small region along LG18. The identified sex-associated marker can be used for the sex detection of this species at genetic level. The fine-mapped sex-determining region will contribute to the mapping of sex-determining gene and help to clarify sex determination system for L. vannamei.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Quanchao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hao Huang
- Hainan Guangtai Ocean Breeding Co., Ltd., Wenchang, 571300, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
32
|
Extra Microchromosomes Play Male Determination Role in Polyploid Gibel Carp. Genetics 2016; 203:1415-24. [PMID: 27017622 DOI: 10.1534/genetics.115.185843] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/19/2016] [Indexed: 11/18/2022] Open
Abstract
Sex is generally determined by sex chromosomes in vertebrates, and sex chromosomes exhibit the most rapidly-evolving traits. Sex chromosome evolution has been revealed previously in numerous cases, but the association between sex chromosome origin and the reproduction mode transition from unisexual to sexual reproduction remains unclear. Here, we have isolated a male-specific sequence via analysis of amplified fragment length polymorphism from polyploid gibel carp (Carassius gibelio), a species that not only has the ability to reproduce unisexually but also contains males in wild populations. Subsequently, we have found through FISH analysis that males have several extra microchromosomes with repetitive sequences and transposable elements when compared to females. Moreover, we produced sex-reversed physiological females with a male-specific marker by using estradiol hormone treatment, and two gynogenetic families were established from them. In addition, the male incidence rates of two gynogenetic families were revealed to be closely associated with the extra microchromosome number of the sex-reversed physiological females. These results suggest that the extra microchromosomes in males might resemble a common feature of sex chromosomes and might play a significant role in male determination during the evolutionary trajectory of the reproduction mode transition from unisexual to sexual reproduction in the polyploid fish.
Collapse
|
33
|
Affiliation(s)
- Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|