1
|
Sun Y, Zhang X, Wang Y, Zhang Z. Long-read RNA sequencing of Pacific abalone Haliotis discus hannai reveals innate immune system responses to environmental stress. FISH & SHELLFISH IMMUNOLOGY 2022; 122:131-145. [PMID: 35122948 DOI: 10.1016/j.fsi.2022.01.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Haliotis discus hannai is a commercially important mollusk species, and the abalone aquaculture sector has been jeopardized by deteriorating environmental circumstances such as bacterial infection and thermal stress during the hot summers. However, due to a paucity of genetic information, such as transcriptome resources, our understanding of their stress adaptation is restricted. In this research, using single-molecule long-read (SMRT) sequencing technology, a library composed of ten tissues (i.e., haemocytes, gills, muscle, hepatopancreas, digestive tract, mantle, mucous gland, ovary, testis and head) was constructed and sequenced. In all, 41,855 high-quality unique transcripts, among which 24,778 were successfully annotated. Additionally, 13,463 SSRs, 1,169 transcription factors, and 18,124 lncRNAs were identified in H. discus hannai transcriptome. Furthermore, multiple immune-related transcripts were identified according to KEGG annotation, and a portion of these transcripts were mapped into several classical immune-related pathways, including the PI3K-AKT signaling pathway and Toll-like receptor signaling pathway. Additionally, 24 typical sequences related to the immunity pathway were detected by RT-PCR; the results showed that most of the immune-related genes showed significantly high expression at 72 h after bacterial challenges and thermal stress, especially the expression level of genes in gills was significantly higher than that in haemocytes under V. parahaemolyticus stress at 24 h. At the same time. The analysis of alternative splicing identified several innate immunity-related functions genes, including CD109 and caspase 2. These results suggest that the complex immune system, particularly the powerful innate immunity system, was crucial for H. discus hannai response to numerous environmental challenges.
Collapse
Affiliation(s)
- Yulong Sun
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fisheries College, Jimei University, Xiamen, 361021, China
| | - Xin Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
de la Ballina NR, Villalba A, Cao A. Shotgun analysis to identify differences in protein expression between granulocytes and hyalinocytes of the European flat oyster Ostrea edulis. FISH & SHELLFISH IMMUNOLOGY 2021; 119:678-691. [PMID: 34748932 DOI: 10.1016/j.fsi.2021.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Recovery of wild populations of the European flat oyster Ostrea edulis is important for ecosystem health and conservation of this species, because native oyster populations have dramatically declined or disappeared in most European waters. Diseases have contributed to oyster decline and are important constrains for oyster recovery. Understanding oyster immune system should contribute to design effective strategies to fight oyster diseases. Haemocytes play a pivotal role in mollusc immune responses protecting from infection. Two main types of haemocytes, granulocytes and hyalinocytes, are distinguished in O. edulis. A study aiming to explore differential functions between both haemocyte types and, thus, to enrich the knowledge of Ostrea edulis immune system, was performed by comparing the proteome of the two haemolymph cell types, using a shotgun approach through liquid chromatography (LC) coupled to mass spectrometry (MS). Cells from oyster haemolymph were differentially separated by Percoll density gradient centrifugation. Shotgun LC-MS/MS performance allowed the identification of 145 proteins in hyalinocytes and 138 in the proteome of granulocytes. After a comparative analysis, 55 proteins with main roles in defence were identified, from which 28 were representative of granulocytes and 27 of hyalinocytes, plus 11 proteins shared by both cell types. Different proteins involved in signal transduction, apoptosis, oxidative response, processes related with the cytoskeleton and structure, recognition and wound healing were identified as representatives of each haemocyte type. Important signalling pathways in the immune response such as MAPK, Ras and NF-κβ seemed to be more relevant for granulocytes, while the Wnt signalling pathway, particularly relevant for wound healing, more relevant in hyalinocytes. The differences in proteins involved in recognition and in cytoskeleton and structure suggest differential specialisation in processes of phagocytosis and internalisation of pathogens between haemocyte types. Apoptosis seemed more active in granulocytes. The differences in proteins involved in oxidative response also suggest different redox processes in each cell type.
Collapse
Affiliation(s)
- Nuria R de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Spain.
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| |
Collapse
|
3
|
Rivera-Urbalejo AP, Vázquez D, Fernández Vázquez JL, Rosete Enríquez M, Cesa-Luna C, Morales-García YE, Muñoz Rojas J, Quintero Hernández V. APORTES Y DIFICULTADES DE LA METAGENÓMICA DE SUELOS Y SU IMPACTO EN LA AGRICULTURA. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n3.85760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los microorganismos son de gran interés porque colonizan todo tipo de ambiente, sin embargo, uno de los problemas al que nos enfrentamos para conocer su diversidad biológica es que no todos los microorganismos son cultivables. El desarrollo de nuevas tecnologías como la generación de vectores de clonación aunado al desarrollo de técnicas de secuenciación de alto rendimiento ha favorecido el surgimiento de una nueva herramienta llamada metagenómica, la cual nos permite estudiar genomas de comunidades enteras de microorganismos. Debido a que ningún ambiente es idéntico a otro, es importante mencionar que dependiendo del tipo de muestra a analizar será el tipo de reto al cual nos enfrentaremos al trabajar con metagenómica, en el caso específico del suelo existen diversas variantes como la contaminación del suelo con metales pesados o diversos compuestos químicos que podrían limitar los estudios. Sin embargo, pese a las limitaciones que el mismo ambiente presenta, la metagenómica ha permitido tanto el descubrimiento de nuevos genes como la caracterización de las comunidades microbianas que influyen positivamente en el desarrollo de plantas, lo cual en un futuro podría generar un gran impacto en la agricultura. En este artículo se realizó una revisión de diversas investigaciones que han empleado metagenómica, reportadas en las bases de datos de PudMed y Google Schoolar, con el objetivo de examinar los beneficios y limitaciones de las diversas metodologías empleadas en el tratamiento del ADN metagenómico de suelo y el impacto de la metagenómica en la agricultura.
Collapse
|
4
|
Ma KY, Yu SH, Du YX, Feng SQ, Qiu LJ, Ke DY, Luo MZ, Qiu GF. Construction of a Genomic Bacterial Artificial Chromosome (BAC) Library for the Prawn Macrobrachium rosenbergii and Initial Analysis of ZW Chromosome-Derived BAC Inserts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:206-216. [PMID: 30632018 DOI: 10.1007/s10126-018-09873-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Knowledge on sex determination has proven valuable for commercial production of the prawn Macrobrachium rosenbergii due to sex dimorphism of the male and female individuals. Previous studies indicated that prawn sex is determined by a ZW-ZZ chromosomal system, but no genomic information is available for the sex chromosome. Herein, we constructed a genomic bacterial artificial chromosome (BAC) library and identified the ZW-derived BAC clones for initial analysis of the sex chromosomal DNA sequence. The arrayed BAC library contains 200,448 clones with average insert size of 115.4 kb, corresponding to ∼ 4× coverage of the estimated 5.38 Gb genome. Based on a short female-specific marker, a Z- and a W-fragment were retrieved with the genomic walking method. Screening the BAC library using a ZW-specific marker as probe resulted in 12 positive clones. From these, a Z-derived (P331M17) and a W-derived (P122G2) BAC clones were randomly selected and sequenced by PacBio method. We report the construction of a large insert, deep-coverage, and high-quality BAC library for M. rosenbergii that provides a useful resource for positional cloning of target genes, genomic organization, and comparative genomics analysis. Our study not only confirmed the ZW/ZZ system but also discovered sex-linked genes on ZW chromosomes for the first time, contributing to a comprehensive understanding of the genomic structure of sex chromosomes in M. rosenbergii.
Collapse
Affiliation(s)
- Ke-Yi Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Shu-Hui Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Yu-Xin Du
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Shi-Qing Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Liang-Jie Qiu
- College of Life Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Dai-Yi Ke
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | - Mei-Zhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Gao-Feng Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306, Shanghai, People's Republic of China.
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New Area, 201306, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Kijas J, Hamilton M, Botwright N, King H, McPherson L, Krsinich A, McWilliam S. Genome Sequencing of Blacklip and Greenlip Abalone for Development and Validation of a SNP Based Genotyping Tool. Front Genet 2019; 9:687. [PMID: 30662453 PMCID: PMC6328477 DOI: 10.3389/fgene.2018.00687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
Abalone breeding in southern Australia often involves the production of interspecies hybrids through crossing blacklip (Haliotos rubra) and greenlip (H. laevigata) parental populations. To assist applied breeding and investigate genetic divergence, this study applied genome sequencing and variant detection to develop and validate a SNP genotyping tool. Skim short read Illumina sequencing was performed using 24 individuals from each of the two parental species and a hybrid population. Raw reads were assembled into three population specific pools (each 12–15 fold coverage), before mapping was performed against a draft greenlip abalone reference genome. Variant detection identified 22.4 M raw variants across the three populations (SNP and indels), suggesting they are highly heterozygous. First stage filtering defined a high quality SNP collection of 2.2 M variants independently called in each of the three populations. Second stage filtering identified a much smaller set of variants for assay design and genotyping using a validation set of 191 abalone of known population and pedigree. Comparison of allele frequency data revealed a high proportion of SNP (43%) had divergent allele frequency (< 0.2) between the two parental populations, suggesting they should have utility for parentage assignment. A maximum likelihood approach was used to successfully assign 105 of 105 progeny to their known true parent amongst a set of 86 candidate parents, confirming the genotyping tool has utility for applied breeding. Analysis of pairwise allele sharing successfully discriminated animals into populations, and PCA of genetic distance grouped the hybrid animals with intermediate values between the two parental populations. The findings present a library of DNA polymorphism of utility to breeding and ecological application, and begins to characterize the divergence separating two economically important aquaculture species.
Collapse
Affiliation(s)
- James Kijas
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | | | - Natasha Botwright
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | - Harry King
- CSIRO Agriculture and Food, Hobart, TAS, Australia
| | - Luke McPherson
- Craig Mostyn Group, Jade Tiger Abalone, Indented Head, VIC, Australia
| | - Anton Krsinich
- Craig Mostyn Group, Jade Tiger Abalone, Indented Head, VIC, Australia
| | - Sean McWilliam
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Yu F, Huang Y, Luo L, Li X, Wu J, Chen R, Zhang M, Deng Z. An improved suppression subtractive hybridization technique to develop species-specific repetitive sequences from Erianthus arundinaceus (Saccharum complex). BMC PLANT BIOLOGY 2018; 18:269. [PMID: 30400857 PMCID: PMC6220460 DOI: 10.1186/s12870-018-1471-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/05/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Sugarcane has recently attracted increased attention for its potential as a source of bioethanol and methane. However, a narrow genetic base has limited germplasm enhancement of sugarcane. Erianthus arundinaceus is an important wild genetic resource that has many excellent traits for improving cultivated sugarcane via wide hybridization. Species-specific repetitive sequences are useful for identifying genome components and investigating chromosome inheritance in noblization between sugarcane and E. arundinaceus. Here, suppression subtractive hybridization (SSH) targeting E. arundinaceus-specific repetitive sequences was performed. The five critical components of the SSH reaction system, including enzyme digestion of genomic DNA (gDNA), adapters, digested gDNA concentrations, primer concentrations, and LA Taq polymerase concentrations, were improved using a stepwise optimization method to establish a SSH system suitable for obtaining E. arundinaceus-specific gDNA fragments. RESULTS Specificity of up to 85.42% was confirmed for the SSH method as measured by reverse dot blot (RDB) of an E. arundinaceus subtractive library. Furthermore, various repetitive sequences were obtained from the E. arundinaceus subtractive library via fluorescence in situ hybridization (FISH), including subtelomeric and centromeric regions. EaCEN2-166F/R and EaSUB1-127F/R primers were then designed as species-specific markers to accurately validate E. arundinaceus authenticity. CONCLUSIONS This is the first report that E. arundinaceus-specific repetitive sequences were obtained via an improved SSH method. These results suggested that this novel SSH system could facilitate screening of species-specific repetitive sequences for species identification and provide a basis for development of similar applications for other plant species.
Collapse
Affiliation(s)
- Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Ling Luo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Jiayun Wu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangdong Provincial Bioengineering Institute, Guangzhou, China
| | - Rukai Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Muqing Zhang
- State Key Laboratory for protection and utilization of subtropical agro-bioresources, Guangxi University, Nanning, 530004 China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- State Key Laboratory for protection and utilization of subtropical agro-bioresources, Guangxi University, Nanning, 530004 China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
7
|
Yu L, Xu D, Ye H, Yue H, Ooka S, Kondo H, Yazawa R, Takeuchi Y. Gonadal Transcriptome Analysis of Pacific Abalone Haliotis discus discus: Identification of Genes Involved in Germ Cell Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:467-480. [PMID: 29616430 DOI: 10.1007/s10126-018-9809-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Little is known about the molecular mechanisms governing gonadal developmental processes in abalones. Here, we conducted transcriptome analysis of Pacific abalone Haliotis discus discus for gene discovery in the brain, ovary, testis, and unfertilized eggs. Among the annotated unigenes, 48.6% of unigenes were identified by Venn diagram analysis as having universal or tissue-specific expression. Twenty-three genes with gonad-biased gene ontology (GO) terms were first obtained. Secondly, 36 genes were found by screening known gene names related to germ cell development. Finally, 17 genes were obtained by querying the annotated unigene database for zygotically expressed gonadal genes (ovary and testis) and maternally expressed gonadal genes (ovary, testis, and unfertilized eggs) using keywords related to reproduction. To further verify tissue distribution pattern and subcellular localization of these genes, RT-PCR and in situ hybridization were performed using a unigene encoding a germ cell marker, vasa, as control. The results showed that vasa was expressed mainly in the early developmental stages of germ cells in both sexes. One of the candidate genes, vitelline envelope zona pellucida domain protein 12 (ZP12), was expressed in the primordial germ cells of immature gonad and early developmental stages of germ cells of the adult female. The results obtained from the present study suggest that vasa and ZP12 are involved in germ cell development of Pacific abalone and that ZP12 is an especially useful germ cell-specific marker in immature adults. The current gonadal transcriptome profile is an extensive resource for future reproductive molecular biology studies of this species.
Collapse
Affiliation(s)
- Lingyun Yu
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba, 294-0308, Japan
| | - Dongdong Xu
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba, 294-0308, Japan
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, Zhejiang Province, 316100, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Shioh Ooka
- Japan Ocean Resources Development and Engineering Co., Ltd., 7-1 Jizohamacho, Kishiwada, Osaka, 596-0015, Japan
| | - Hidehiro Kondo
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Minato, Konan 4-5-7, Tokyo, 108-8477, Japan
| | - Ryosuke Yazawa
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Minato, Konan 4-5-7, Tokyo, 108-8477, Japan
| | - Yutaka Takeuchi
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan.
| |
Collapse
|
8
|
Liu Y, Zhang B, Wen X, Zhang S, Wei Y, Lu Q, Liu Z, Wang K, Liu F, Peng R. Construction and characterization of a bacterial artificial chromosome library for Gossypium mustelinum. PLoS One 2018; 13:e0196847. [PMID: 29771937 PMCID: PMC5957370 DOI: 10.1371/journal.pone.0196847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/20/2018] [Indexed: 11/18/2022] Open
Abstract
A bacterial artificial chromosome (BAC) library for G. mustelinum Miers ex G. Watt (AD4) was constructed. Intact nuclei from G. mustelinum (AD4) were used to isolate high molecular weight DNA, which was partially cleaved with Hind III and cloned into pSMART BAC (Hind III) vectors. The BAC library consisted of 208,182 clones arrayed in 542 384-microtiter plates, with an average insert size of 121.72 kb ranging from 100 to 150 kb. About 2% of the clones did not contain inserts. Based on an estimated genome size of 2372 Mb for G. mustelinum, the BAC library was estimated to have a total coverage of 10.50 × genome equivalents. The high capacity library of G. mustelinum will serve as a giant gene resource for map-based cloning of quantitative trait loci or genes associated with important agronomic traits or resistance to Verticillium wilt, physical mapping and comparative genome analysis.
Collapse
Affiliation(s)
- Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States of America
| | - Xinpeng Wen
- Anyang Institute of Technology, Anyang, Henan, China
| | - Shulin Zhang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, China
| | - Quanwei Lu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Zhen Liu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
- * E-mail: (FL); (RP)
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, Henan, China
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan, China
- * E-mail: (FL); (RP)
| |
Collapse
|
9
|
Alternative Splicing Profile and Sex-Preferential Gene Expression in the Female and Male Pacific Abalone Haliotis discus hannai. Genes (Basel) 2017; 8:genes8030099. [PMID: 28282934 PMCID: PMC5368703 DOI: 10.3390/genes8030099] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone.
Collapse
|