1
|
Shen Y, Dai Y, Yu F, Peng W, Liu J, You W, Luo X, Ke C, Chen N. The weak association between hypoxia tolerance and thermal tolerance increases the susceptibility of abalone to climate change. ENVIRONMENTAL RESEARCH 2025; 264:120324. [PMID: 39522871 DOI: 10.1016/j.envres.2024.120324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The simultaneous occurrence of high temperatures and hypoxia events caused mass die-offs of aquatic animals. It is crucial to investigate the relationship between hypoxia tolerance and thermal tolerance of aquatic animals to predict the biological and ecological outcomes under global climate change scenarios. In this study, the hypoxia tolerance and thermal tolerance of Pacific abalone, Haliotis discus hannai, were measured by methods based on adhesion capacity (hypoxia adhesion duration and heat adhesion duration) and heart rate fluctuations (breakpoint of dissolved oxygen and Arrhenius breakpoint temperature). Weak correlations were found between hypoxia tolerance and thermal tolerance (Spearman correlation, r = -0.09, P = 0.2069; Pearson correlation, r = -0.04, P = 0.3313). Furthermore, a total of 21 significant SNPs and 19 candidate genes (such as cubn, lrp6, gria2, rft2, and casp8) were identified to be associated with hypoxia tolerance of Pacific abalone by conducting whole genome resequencing and genome-wide association study (GWAS). But there was no overlap between candidate genes associated with hypoxia tolerance and candidate genes associated with thermal tolerance, validating the weak correlation between hypoxia tolerance and thermal tolerance. This study highlights that individuals with greater hypoxia tolerance do not necessarily have greater thermal tolerance. Global warming and hypoxia may pose a greater threat to population size and genetic diversity of some aquatic animals than previously believed.
Collapse
Affiliation(s)
- Yawei Shen
- State Key Laboratory of Marine Environmental Science, College of the Environmental and Ecology, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Yue Dai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Feng Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Junyu Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| | - Nan Chen
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Yan FY, Xu YF, Feng WR, He QH, Hua GA, Li WJ, Xu P, Zhou J, Tang YK. Genomic analysis of hypoxia-tolerant population of the Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109931. [PMID: 39343063 DOI: 10.1016/j.fsi.2024.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Hypoxic stress, triggered by a multitude of factors, has inflicted significant economic repercussions on the aquaculture of Eriocheir sinensis. In this research, we sequenced a collective of 60 samples from both hypoxia-sensitive and hypoxia-resistant groups utilizing streamlined genome sequencing techniques. Subsequently, we delved into population evolution, scrutinized the selective sweep within these populations, and performed a genome-wide association study (GWAS) focused on the hypoxia tolerance traits within the population, all through the lens of SNPs molecular markers. This comprehensive analysis aimed to uncover the SNPs and pinpoint the pertinent candidate genes that influence the hypoxia tolerance capabilities of E. sinensis. The selective sweep analysis revealed that genes harboring potential genetic variations within the two populations were predominantly enriched in areas such as signaling molecules and interactions, energy metabolism, glycolipid metabolism, and immune response. In the genome-wide association study focusing on hypoxia tolerance traits, we identified four SNPs significantly associated with hypoxia resistance. Furthermore, one potential candidate gene, Dscam2, which is believed to influence hypoxia tolerance, was discovered within a 50 kb vicinity of these SNPs. These identified SNPs can serve as molecular markers for screening hypoxia tolerance, offering valuable insights for the genetic improvement of E. sinensis.
Collapse
Affiliation(s)
- Feng-Yuan Yan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yuan-Feng Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wen-Rong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qing-Hong He
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Guo-An Hua
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou, 225500, China
| | - Wen-Jing Li
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou, 225500, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Yong-Kai Tang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
3
|
Wang H, Yang Z, Wang S, Zhao A, Wang H, Liu Z, Sui M, Bao L, Zeng Q, Hu J, Bao Z, Huang X. Genome-wide association analysis reveals the genetic basis of thermal tolerance in dwarf surf clam Mulinia lateralis. Genomics 2024; 116:110904. [PMID: 39084476 DOI: 10.1016/j.ygeno.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Recently, elevated seawater temperatures have resulted numerous adverse effects, including significant mortality among bivalves. The dwarf surf clam, Mulinia lateralis, is considered a valuable model species for bivalve research due to its rapid growth and short generation time. The successful cultivation in laboratory setting throughout its entire life cycle makes it an ideal candidate for exploring the potential mechanisms underlying bivalve responses to thermal stress. In this study, a total of 600 clams were subjected to a 17-day thermal stress experiment at a temperature of 30 °C which is the semi-lethal temperature for this species. Ninety individuals who perished initially were classified as heat-sensitive populations (HSP), while 89 individuals who survived the experiment were classified as heat-tolerant populations (HTP). Subsequently, 179 individuals were then sequenced, and 21,292 single nucleotide polymorphisms (SNPs) were genotyped for downstream analysis. The heritability estimate for survival status was found to be 0.375 ± 0.127 suggesting a genetic basis for thermal tolerance trait. Furthermore, a genome-wide association study (GWAS) identified three SNPs and 10 candidate genes associated with thermal tolerance trait in M. lateralis. These candidate genes were involved in the ETHR/EHF signaling pathway and played pivotal role in signal sensory, cell adhesion, oxidative stress, DNA damage repair, etc. Additionally, qPCR results indicated that, excluding MGAT4A, ZAN, and RFC1 genes, all others exhibited significantly higher expression in the HTP (p < 0.05), underscoring the critical involvement of the ETHR/EHF signaling pathway in M. lateralis' thermal tolerance. These results unveil the presence of standing genetic variations associated with thermal tolerance in M. lateralis, highlighting the regulatory role of the ETHR/EHF signaling pathway in the bivalve's response to thermal stress, which contribute to comprehension of the genetic basis of thermal tolerance in bivalves.
Collapse
Affiliation(s)
- Haoran Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Academy of Future Ocean, Ocean University of China, Qingdao, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Shenhai Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mingyi Sui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lijingjing Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Academy of Future Ocean, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
4
|
Porretta D, Canestrelli D. The ecological importance of hybridization. Trends Ecol Evol 2023; 38:1097-1108. [PMID: 37620217 DOI: 10.1016/j.tree.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Hybridization as an evolutionary process has been studied in depth over the past few decades. Research has focused on its role in shaping reproductive barriers, its adaptive value, and its genomic consequences. In contrast, our knowledge of ecological dimensions of hybridization is still in its infancy, despite hybridization being an inherently ecological interaction. Using examples from various organisms, we show that hybridization can affect and be affected by non-reproductive interactions, including predation, competition, parasitism, mutualism, commensalism, and organism-environment interactions, with significant implications for community structure and ecosystem functioning. However, since these dimensions of hybridization have mostly been revealed from studies designed to decipher other evolutionary processes, we argue that much of the eco-evolutionary importance of hybridization is yet to be discovered.
Collapse
Affiliation(s)
- Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, Italy.
| | | |
Collapse
|
5
|
Zhang Y, Shen W, Ding J, Gao X, Wu X, Zhu J. Comparative Transcriptome Analysis of Head Kidney of Aeromonas hydrophila-infected Hypoxia-tolerant and Normal Large Yellow Croaker. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1039-1054. [PMID: 36129638 DOI: 10.1007/s10126-022-10158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most economically important marine fish on the southeast coast of China and much of its yield is usually lost by hypoxia. To address this problem and lay a foundation for culturing a new strain of large yellow croaker with hypoxia tolerance, our research group screened a hypoxia-tolerant population of L. crocea. Surprisingly, we also found that hypoxia-tolerant population exhibited higher survival when infected with pathogens compared to the normal population during the farming operation. In order to understand the mechanism underlying the higher survival rate of the hypoxia-tolerant population and enrich the head kidney immune mechanism of L. crocea infected with pathogens, we compared and analyzed the head kidney transcriptome of the hypoxia-tolerant and normal individuals under Aeromonas hydrophila infection. We obtained 159.68 GB high-quality reads, of which more than 87.61% were successfully localized to the reference genome of L. crocea. KEGG analysis revealed differentially expressed genes in the signaling pathways involving immunity, cell growth and death, transport and catabolism, and metabolism. Among these, the toll-like receptor signaling pathway, Nod-like receptor signaling pathway, cytokine-cytokine receptor interaction, phagosome, apoptosis, and OXPHOS pathways were enriched in both groups after infection compared to before, and were enriched in infected tolerant individuals compared to normal individuals. In addition, we found that the expression of hif1α and its downstream genes were higher in the hypoxia-sensitive group of fish than in the normal group. In conclusion, our results showed some signaling pathways and hub genes, which may participate in A. hydrophila defense in the head kidney of two populations, and may contribute to the higher survival rate in the hypoxia-tolerant population. Overall, these findings increase our understanding of the defense mechanism within the head kidney of L. crocea under A. hydrophila infection, and suggest a preliminary hypothesis for why hypoxia-tolerant individuals may exhibit a higher survival rates after infection. Our study provides scientific evidence for the breeding of a new hypoxia-tolerant strain of L. crocea for aquaculture.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Weiliang Shen
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China.
| | - Jie Ding
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Xinming Gao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xiongfei Wu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022; 13:994471. [PMID: 36406125 PMCID: PMC9666392 DOI: 10.3389/fgene.2022.994471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhanjiang Liu,
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
7
|
Cui X, Zhang Q, Zhang Q, Zhang Y, Chen H, Liu G, Zhu L. Research Progress of the Gut Microbiome in Hybrid Fish. Microorganisms 2022; 10:891. [PMID: 35630336 PMCID: PMC9146865 DOI: 10.3390/microorganisms10050891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Fish, including hybrid species, are essential components of aquaculture, and the gut microbiome plays a vital role in fish growth, behavior, digestion, and immune health. The gut microbiome can be affected by various internal and/or external factors, such as host development, diet, and environment. We reviewed the effects of diet and dietary supplements on intestinal microorganisms in hybrid fish and the difference in the gut microbiome between the hybrid and their hybrids that originate. Then, we summarized the role of the gut microbiome in the speciation and ecological invasion of hybrid fish. Finally, we discussed possible future studies on the gut microbiome in hybrid fish, including the potential interaction with environmental microbiomes, the effects of the gut microbiome on population expansion, and fish conservation and management.
Collapse
Affiliation(s)
- Xinyuan Cui
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qinrong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qunde Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Yongyong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Hua Chen
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Guoqi Liu
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| |
Collapse
|
8
|
Kondratyev NV, Alfimova MV, Golov AK, Golimbet VE. Bench Research Informed by GWAS Results. Cells 2021; 10:3184. [PMID: 34831407 PMCID: PMC8623533 DOI: 10.3390/cells10113184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Scientifically interesting as well as practically important phenotypes often belong to the realm of complex traits. To the extent that these traits are hereditary, they are usually 'highly polygenic'. The study of such traits presents a challenge for researchers, as the complex genetic architecture of such traits makes it nearly impossible to utilise many of the usual methods of reverse genetics, which often focus on specific genes. In recent years, thousands of genome-wide association studies (GWAS) were undertaken to explore the relationships between complex traits and a large number of genetic factors, most of which are characterised by tiny effects. In this review, we aim to familiarise 'wet biologists' with approaches for the interpretation of GWAS results, to clarify some issues that may seem counterintuitive and to assess the possibility of using GWAS results in experiments on various complex traits.
Collapse
Affiliation(s)
| | | | - Arkadiy K. Golov
- Mental Health Research Center, 115522 Moscow, Russia; (M.V.A.); (A.K.G.); (V.E.G.)
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, 115522 Moscow, Russia; (M.V.A.); (A.K.G.); (V.E.G.)
| |
Collapse
|
9
|
Yang Z, Sun F, Liao H, Zhang Z, Dou Z, Xing Q, Hu J, Huang X, Bao Z. Genome-wide association study reveals genetic variations associated with ocean acidification resilience in Yesso scallop Patinopecten yessoensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105963. [PMID: 34547702 DOI: 10.1016/j.aquatox.2021.105963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Ocean acidification (OA), which refers to a gradual decrease in seawater pH due to the absorption of atmospheric carbon dioxide, profoundly affects the growth, development and survival of bivalves. Relatively limited studies have assessed the resilience of bivalve to OA. In the present study, Patinopecten yessoensis, an economically and ecologically significant species, were exposed to low pH (pH = 7.5) for 4 weeks. Forty-seven scallops that died in the first week were considered pH-sensitive population, and 20 that were alive at the end of the experiment were considered pH-tolerant population. A genome-wide association study was conducted to identify the genomic loci associated the resilience of P. yessoensis to OA. Twenty-one single nucleotide polymorphisms were significantly associated with resilience, which were distributed in 11 linkage groups. Within the linkage disequilibrium block region (± 300 kb) surrounding the 21 SNPs, 193 candidate genes were successfully identified. Particularly, five associated SNPs were directly located on five genes, including SP24, CFDH, 5HTR3, HSDL1 and ZFP346. The GO enrichment and KEGG pathway analyses showed that the molecular response of P. yessoensis to OA mainly involved neural signal transmission, energy metabolism and redox reaction. Candidate genes were expressed during larval development and in adult tissues. Furthermore, the expression of 30 candidate genes changed significantly under low pH stress in the mantle. Our results reveal certain SNPs and candidate genes that could elucidate the different responses of P. yessoensis to OA. The genetic variations indicated molecular resilience in P. yessoensis populations, which may enable adaptation to future acidification stress.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Fanhua Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, China
| | - Zhengrui Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zheng Dou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| |
Collapse
|
10
|
Yu X, Megens HJ, Mengistu SB, Bastiaansen JWM, Mulder HA, Benzie JAH, Groenen MAM, Komen H. Genome-wide association analysis of adaptation to oxygen stress in Nile tilapia (Oreochromis niloticus). BMC Genomics 2021; 22:426. [PMID: 34107887 PMCID: PMC8188787 DOI: 10.1186/s12864-021-07486-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background Tilapia is one of the most abundant species in aquaculture. Hypoxia is known to depress growth rate, but the genetic mechanism by which this occurs is unknown. In this study, two groups consisting of 3140 fish that were raised in either aerated (normoxia) or non-aerated pond (nocturnal hypoxia). During grow out, fish were sampled five times to determine individual body weight (BW) gains. We applied a genome-wide association study to identify SNPs and genes associated with the hypoxic and normoxic environments in the 16th generation of a Genetically Improved Farmed Tilapia population. Results In the hypoxic environment, 36 SNPs associated with at least one of the five body weight measurements (BW1 till BW5), of which six, located between 19.48 Mb and 21.04 Mb on Linkage group (LG) 8, were significant for body weight in the early growth stage (BW1 to BW2). Further significant associations were found for BW in the later growth stage (BW3 to BW5), located on LG1 and LG8. Analysis of genes within the candidate genomic region suggested that MAPK and VEGF signalling were significantly involved in the later growth stage under the hypoxic environment. Well-known hypoxia-regulated genes such as igf1rb, rora, efna3 and aurk were also associated with growth in the later stage in the hypoxic environment. Conversely, 13 linkage groups containing 29 unique significant and suggestive SNPs were found across the whole growth period under the normoxic environment. A meta-analysis showed that 33 SNPs were significantly associated with BW across the two environments, indicating a shared effect independent of hypoxic or normoxic environment. Functional pathways were involved in nervous system development and organ growth in the early stage, and oocyte maturation in the later stage. Conclusions There are clear genotype-growth associations in both normoxic and hypoxic environments, although genome architecture involved changed over the growing period, indicating a transition in metabolism along the way. The involvement of pathways important in hypoxia especially at the later growth stage indicates a genotype-by-environment interaction, in which MAPK and VEGF signalling are important components. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07486-5.
Collapse
Affiliation(s)
- Xiaofei Yu
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands.
| | - Hendrik-Jan Megens
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Samuel Bekele Mengistu
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands.,School of Animal and Range Sciences, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - John W M Bastiaansen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Han A Mulder
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - John A H Benzie
- WorldFish Centre, Jalan Batu Maung, Bayan Lepas, Penang, Malaysia.,School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Martien A M Groenen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Hans Komen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, The Netherlands
| |
Collapse
|
11
|
Lyu D, Yu Y, Wang Q, Luo Z, Zhang Q, Zhang X, Xiang J, Li F. Identification of Growth-Associated Genes by Genome-Wide Association Study and Their Potential Application in the Breeding of Pacific White Shrimp ( Litopenaeus vannamei). Front Genet 2021; 12:611570. [PMID: 33897754 PMCID: PMC8058354 DOI: 10.3389/fgene.2021.611570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
The Pacific white shrimp (Litopenaeus vannamei) is the most widely cultured shrimp in the world. A great attention has been paid to improve its body weight (BW) at harvest through genetic selection for decades. Genome-wide association study (GWAS) is a tool to dissect the genetic basis of the traits. In this study, a GWAS approach was conducted to find genes related to BW through genotyping 94,113 single nucleotide polymorphisms (SNPs) in 200 individuals from a breeding population. Four BW-related SNPs located in LG19 and LG39 were identified. Through further candidate gene association analysis, the SNPs in two candidate genes, deoxycytidylate deaminase and non-receptor protein tyrosine kinase, were found to be related with the body weight of the shrimp. Marker-assisted best linear unbiased prediction (MA-BLUP) based on the SNPs in these two genes was used to estimate the breeding values, and the result showed that the highest prediction accuracy of MA-BLUP was increased by 9.4% than traditional BLUP. These results will provide useful information for the marker-assisted breeding in L. vannamei.
Collapse
Affiliation(s)
- Ding Lyu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Quanchao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zheng Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Zhang G, Li J, Zhang J, Liang X, Wang T, Yin S. A high-density SNP-based genetic map and several economic traits-related loci in Pelteobagrus vachelli. BMC Genomics 2020; 21:700. [PMID: 33028208 PMCID: PMC7542894 DOI: 10.1186/s12864-020-07115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/29/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection in aquaculture species. Pelteobagrus vachelli is a very popular commercial species in Asia. However, some specific characters hindered achievement of the traditional selective breeding based on phenotypes, such as lack of large-scale genomic resource and short of markers tightly associated with growth, sex determination and hypoxia tolerance related traits. RESULTS By making use of 5059 ddRAD markers in P. vachelli, a high-resolution genetic linkage map was successfully constructed. The map' length was 4047.01 cM by using an interval of 0.11 cm, which is an average marker standard. Comparative genome mapping revealed that a high proportion (83.2%) of markers with a one-to-one correspondence were observed between P. vachelli and P. fulvidraco. Based on the genetic map, 8 significant genome-wide QTLs for 4 weight, 1 body proportion, 2 sex determination, and 1 hypoxia tolerance related traits were detected on 4 LGs. Some SNPs from these significant genome-wide QTLs were observably associated with these phenotypic traits in other individuals by Kompetitive Allele Specific PCR. In addition, two candidate genes for weight, Sipa1 and HSD11B2, were differentially expressed between fast-, medium- and slow-growing P. vachelli. Sema7a, associated with hypoxia tolerance, was induced after hypoxia exposure and reoxygenation. CONCLUSIONS We mapped a set of suggestive and significant QTLs as well as candidate genes for 12 growth, 1 sex determination and 1 hypoxia tolerance related traits based on a high-density genetic linkage map by making use of SNP markers for P. fulvidraco. Our results have offered a valuable method about the much more efficient production of all-male, fast growth and hypoxia tolerance P. vachelli for the aquaculture industry.
Collapse
Affiliation(s)
- Guosong Zhang
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Key laboratory for physiology biochemistry and application, Heze University, Heze, 274015, Shandong, China
| | - Jie Li
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jiajia Zhang
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xia Liang
- Key laboratory for physiology biochemistry and application, Heze University, Heze, 274015, Shandong, China
| | - Tao Wang
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China.
| |
Collapse
|
13
|
Wang Q, Yu Y, Zhang Q, Luo Z, Zhang X, Xiang J, Li F. The Polymorphism of LvMMD2 and Its Association with Growth Traits in Litopenaeus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:564-571. [PMID: 32578061 DOI: 10.1007/s10126-020-09977-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
The Pacific white shrimp Litopenaeus vannamei is one of the major economic aquaculture species. The growth trait is considered as the most important trait in L. vannamei aquaculture. Identification of the genetic components underlying growth-related traits in L. vannamei could be useful for the selective breeding of growth trait. Our previous work identified several growth-related SNPs by genome-wide association study (GWAS). Based on the assembled genome, we identified a new candidate gene (LvMMD2) beside the associated marker. This gene encodes the progestin and AdipoQ receptor 10 (PAQR10) protein. We further investigate the polymorphisms of LvMMD2 and their association with body weight of L. vannamei. By resequencing the coding region of LvMMD2, a total of 8 SNPs were identified, including 6 synonymous mutations and 2 nonsynonymous mutations. Association analyses based on a population of 322 individuals revealed that several SNPs located in the coding region of LvMMD2 were significantly associated with the body weight, especially the nonsynonymous mutation named as MMD_5 contributed the most association to the trait and it could explain 10.5% of phenotypic variance. In addition, several genes involved in growth and development have been identified as LvMMD2-interacting genes. These findings strongly suggested that LvMMD2 might be an important gene regulating the shrimp growth. More importantly, the MMD_5 could be a promising candidate locus for marker-assisted selection (MAS) of the body weight in L. vannamei.
Collapse
Affiliation(s)
- Quanchao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
14
|
Individual-based population genomics reveal different drivers of adaptation in sympatric fish. Sci Rep 2020; 10:12683. [PMID: 32728037 PMCID: PMC7391720 DOI: 10.1038/s41598-020-69160-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/03/2020] [Indexed: 01/08/2023] Open
Abstract
Connectivity and local adaptation are two contrasting evolutionary forces highly influencing population structure. To evaluate the impact of early-life traits and environmental conditions on genetic structuring and adaptation, we studied two sympatric fish species in the Western Mediterranean Sea: Symphodus tinca and S. ocellatus. We followed an individual-based approach and measured early-life history traits from otolith readings, gathered information on environmental variables and obtained genome-wide markers from genotyping-by-sequencing (GBS). The two species presented contrasting population structure across the same geographic gradient, with high and significant population differentiation in S. ocellatus, mostly determined by oceanographic fronts, and low differentiation and no front effect in S. tinca. Despite their different levels of genetic differentiation, we identified in both species candidate regions for local adaptation by combining outlier analysis with environmental and phenotypic association analyses. Most candidate loci were associated to temperature and productivity in S. ocellatus and to temperature and turbulence in S. tinca suggesting that different drivers may determine genomic diversity and differentiation in each species. Globally, our study highlights that individual-based approach combining genomic, environmental and phenotypic information is key to identify signals of selection and the processes mediating them.
Collapse
|
15
|
Zhang H, Chu Y, Dang P, Tang Y, Jiang T, Clevenger JP, Ozias-Akins P, Holbrook C, Wang ML, Campbell H, Hagan A, Chen C. Identification of QTLs for resistance to leaf spots in cultivated peanut (Arachis hypogaea L.) through GWAS analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2051-2061. [PMID: 32144466 DOI: 10.1007/s00122-020-03576-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Two QTLs on ChrB09 significantly associated with both early and late leaf spots were identified by genome-wide association study in the US peanut mini-core collection. Early leaf spot (ELS) and late leaf spot (LLS) are two serious peanut diseases in the USA, causing tens of millions of dollars of annual economic losses. However, the genetic factors underlying resistance to those diseases in peanuts have not been well-studied. We conducted a genome-wide association study for the two peanut diseases using Affymetrix version 2.0 SNP array with 120 genotypes mainly coming from the US peanut mini-core collection. A total of 46 quantitative trait loci (QTLs) were identified with phenotypic variation explained (PVE) from 10.19 to 24.11%, in which eighteen QTLs are for resistance to ELS and 28 QTLs for LLS. Among the 46 QTLs, there were four and two major QTLs with PVE higher than 16.99% for resistance ELS and LLS, respectively. Of the six major QTLs, five were located on the B sub-genome and only one was on the A sub-genome, which suggested that the B sub-genome has more potential resistance genomic regions than the A sub-genome. In addition, two genomic regions on chromosome B09 were found to provide significant resistance to both ELS and LLS. A total of 74 non-redundant genes were identified as resistance genes, among which, twelve candidate genes were in significant genomic regions including two candidate genes for both ELS and LLS, and other ten candidate genes for ELS. The QTLs and candidate genes obtained from this study will be useful to breed peanuts for resistances to the diseases.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ye Chu
- Center for Applied Genetic Technologies, University of Georgia, Tifton, GA, 31793, USA
| | - Phat Dang
- USDA-ARS National Peanut Research Laboratory, Dawson, GA, 39842, USA
| | - Yueyi Tang
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Tao Jiang
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Josh Paul Clevenger
- Center for Applied Genetic Technologies, University of Georgia, Tifton, GA, 31793, USA
| | - Peggy Ozias-Akins
- Center for Applied Genetic Technologies, University of Georgia, Tifton, GA, 31793, USA
| | - Corley Holbrook
- USDA-ARS Crop Genetics and Breeding Research, Tifton, GA, 31793, USA
| | - Ming Li Wang
- USDA-ARS Plant Genetic Resources Conservation, Griffin, GA, 30223, USA
| | - Howard Campbell
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Austin Hagan
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Charles Chen
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
16
|
Yang Y, Wu L, Wu X, Li B, Huang W, Weng Z, Lin Z, Song L, Guo Y, Meng Z, Liu X, Xia J. Identification of Candidate Growth-Related SNPs and Genes Using GWAS in Brown-Marbled Grouper (Epinephelus fuscoguttatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:153-166. [PMID: 31927644 DOI: 10.1007/s10126-019-09940-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Brown-marbled grouper, Epinephelus fuscoguttatus, is not only an important commercial fish species, but also an important crossbreeding parent in grouper industry. Improvement of growth traits of this species contributes to the development of grouper breeding. Currently, the development of molecular marker associated with growth of brown-marbled grouper is rare. Thus, we performed the first genome-wide association study (GWAS) for five growth traits in 172 brown-marbled groupers with 43,688 SNPs detected by ddRAD-seq. We identified a total of 5 significant and 18 suggestive QTLs located in multiple chromosomes associated with growth traits. In the 20 kb window of the significant SNPs and suggestive SNPs, 5 and 14 potential candidate genes affecting growth were detected, respectively. Five potential candidate genes near the significantly associated SNPs were selected for expression analysis. Among of which, bmp2k, wasf1, and acyp2 involved in bone development, maintenance of mitochondrion structure, and metabolism were differentially expressed. Interestingly, the SNP 23:29601315 located in the intron of bmp2k was significantly associated with body weight, body length, body height, and body thickness and suggestively associated with total length. We verified the locus using another new group including 123 individuals. The results showed that individuals with CC genotype have better growth traits comparing other individuals. Our findings not only contribute to understanding the molecular mechanism of growth regulation, but also promote the advance of marker-assisted selection in brown-marbled grouper.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Lina Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Xi Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Bijun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Wenhua Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Zhuoying Weng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Zixuan Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Leling Song
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China.
- Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, 510275, People's Republic of China.
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China.
- Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, 510275, People's Republic of China.
| | - Junhong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| |
Collapse
|
17
|
Shi Y, Zhou Z, Liu B, Kong S, Chen B, Bai H, Li L, Pu F, Xu P. Construction of a High-Density Genetic Linkage Map and QTL Mapping for Growth-Related Traits in Takifugu bimaculatus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:130-144. [PMID: 31900733 DOI: 10.1007/s10126-019-09938-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Takifugu bimaculatus is a euryhaline species, distributed ranging from the southern Yellow Sea to the South China Sea. Their tolerance to a wide range of salinity and temperature, coupled with a desirable firm texture, makes T. bimaculatus a strong candidate for Takifugu aquaculture in subtropics areas. Due to the increasing demand in markets and emerging of the Takifugu aquaculture industry, close attention has been paid to improvement on the T. bimaculatus production. In aquaculture, the great effort has been put into marker-assisted selective breeding, and efficient improvement was realized. However, few genetic resources on T. bimaculatus are provided so far. Aiming at understanding the genetic basis underlying important economic growth traits, facilitating genetic improvement and enriching the genetic resource in T. bimaculatus, we constructed the first genetic linkage map for T. bimaculatus via double digestion restriction-site association DNA sequencing and conducted quantitative traits locus (QTL) mapping for growth-related traits. The map comprised 1976 single nucleotide polymorphism markers distributed on 22 linkage groups (LG), with a total genetic distance of 2039.74 cM. Based on the linkage map, a chromosome-level assembly was constructed whereby we carried out comparative genomics analysis, verifying the high accuracy on contigs ordering of the linkage map. On the other hand, 18 QTLs associated with growth traits were detected on LG6, LG7, LG8, LG10, LG20, and LG21 with phenotypical variance ranging from 15.1 to 56.4%. Candidate genes participating in cartilage development, fat accumulation, and other growth-related regulation activities were identified from these QTLs, including col11a1, foxa2, and thrap3. The linkage map provided a solid foundation for chromosomes assembly and refinement. QTLs reported here unraveled the genomic architecture of some growth traits, which will advance the investigation of aquaculture breeding efforts in T. bimaculatus.
Collapse
Affiliation(s)
- Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Bo Liu
- Fisheries Research Institute of Fujian, Xiamen, China
| | - Shengnan Kong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Leibin Li
- Fisheries Research Institute of Fujian, Xiamen, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, China.
| |
Collapse
|
18
|
Yang Z, Wang L, Wong SM, Yue GH. The HIF1αn gene and its association with hypoxia tolerance in the Asian seabass. Gene 2020; 731:144341. [PMID: 31935502 DOI: 10.1016/j.gene.2020.144341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 11/30/2022]
Abstract
Hypoxia is one of the major challenges in aquaculture industry. Breeding of fish tolerant to hypoxia is an important task in genetic improvement of aquaculture species. The Asian seabass, Lates calcarifer, is an important foodfish species. We identified and characterized the hypoxia-inducible factor inhibitor (HIF1αn) gene in the Asian seabass. The full-length cDNA sequence of the HIF1αn was 3425 bp, with an ORF of 1065 bp, encoding 354 amino acids. The genomic sequence of the gene was 8667 bp in length, and contained eight exons and seven introns. Phylogenetic analysis of the gene in fish and tetrapods revealed that the HIF1αn in the Asian seabass was closely related to that of tilapia (Oreochromis niloticus). The HIF1αn was highly up-regulated in the gill, spleen and heart after 3.5-hours hypoxia treatment. We identified three SNPs in the third and fourth introns of the HIF1αn gene. The SNP (i.e. SNP 9332241 (C/T)) in the fourth intron was significantly (P < 0.01) associated with hypoxia tolerance. This SNP might be useful in selecting Asian seabass for improved tolerance to hypoxia. Our data also provide useful information for further detailed analysis of the function of the HIF1αn gene in hypoxia tolerance.
Collapse
Affiliation(s)
- Zituo Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Le Wang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Sek Man Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu 215123, China.
| | - Gen Hua Yue
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore; School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, 637551, Singapore.
| |
Collapse
|
19
|
Wang L, Chua E, Sun F, Wan ZY, Ye B, Pang H, Wen Y, Yue GH. Mapping and Validating QTL for Fatty Acid Compositions and Growth Traits in Asian Seabass. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:643-654. [PMID: 31273567 DOI: 10.1007/s10126-019-09909-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Asian seabass is an important food fish species. While improving growth, increasing the nutritional value is important, omega-3 fatty acids are indispensable to human health. Identifying and validating DNA markers associated with traits is the first step towards marker-assisted selection (MAS). We quantified 13 different fatty acids and three growth traits in 213 F2 Asian seabass from a family at the age 270 days post hatch, and screened QTL for these traits. The content of total fatty acids in 100 g flesh was 2.57 ± 0.80 g, while the proportions of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were 16.96 ± 2.20% and 5.42 ± 0.90%, respectively. A linkage map with 2424 SNPs was constructed and used for QTL mapping. For fatty acid compositions, 14 significant QTL were identified on three linkage groups (LG5, LG11 and LG14), with phenotypic variance explained (PVE) from 12.8 to 24.6%. Thirty-nine suggestive QTL were detected on 16 LGs. Two significant QTL for EPA were identified on LG5 and LG14, with PVE of 15.2% and 15.1%, respectively. No significant QTL was identified for DHA. For growth traits, six significant and 13 suggestive QTL were identified on two and seven LGs, respectively. Only a few significant QTL for fatty acids overlapped with previously mapped QTL for these traits, suggesting that most QTL detected in a family are family-specific and could only be used in MAS in the family per se. To facilitate population-wide molecular breeding, more powerful methods (e.g. GWAS) should be used to identify SNPs for genomic selection.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Elaine Chua
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Fei Sun
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Baoqing Ye
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Hongyan Pang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Yanfei Wen
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
20
|
Zhou Z, Han K, Wu Y, Bai H, Ke Q, Pu F, Wang Y, Xu P. Genome-Wide Association Study of Growth and Body-Shape-Related Traits in Large Yellow Croaker (Larimichthys crocea) Using ddRAD Sequencing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:655-670. [PMID: 31332575 DOI: 10.1007/s10126-019-09910-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is an economically important marine fish species of China. Due to overfishing and marine pollution, the wild stocks of this croaker have collapsed in the past decades. Meanwhile, the cultured croaker is facing the difficulties of reduced genetic diversity and low growth rate. To explore the molecular markers related to the growth traits of croaker and providing the related SNPs for the marker-assisted selection, we used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect the genetic bases of growth traits in a cultured population and identify the SNPs that associated with important growth traits by GWAS. A total of 220 individuals were genotyped by ddRAD sequencing. After quality control, 27,227 SNPs were identified in 220 samples and used for GWAS analysis. We identified 13 genome-wide significant associated SNPs of growth traits on 8 chromosomes, and the beta P of these SNPs ranged from 0.01 to 0.86. Through the definition of candidate regions and gene annotation, candidate genes related to growth were identified, including important regulators such as fgf18, fgf1, nr3c1, cyp8b1, fabp2, cyp2r1, ppara, and ccm2l. We also identified SNPs and candidate genes that significantly associated with body shape, including bmp7, col1a1, col11a2, and col18a1, which are also economically important traits for large yellow croaker aquaculture. The results provided insights into the genetic basis of growth and body shape in large yellow croaker population and would provide reliable genetic markers for molecular marker-assisted selection in the future. Meanwhile, the result established a basis for our subsequent fine mapping and related gene study.
Collapse
Affiliation(s)
- Zhixiong Zhou
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Kunhuang Han
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yidi Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yilei Wang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Peng Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
21
|
Wu L, Yang Y, Li B, Huang W, Wang X, Liu X, Meng Z, Xia J. First Genome-wide Association Analysis for Growth Traits in the Largest Coral Reef-Dwelling Bony Fishes, the Giant Grouper (Epinephelus lanceolatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:707-717. [PMID: 31392592 DOI: 10.1007/s10126-019-09916-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The giant grouper, Epinephelus lanceolatus, is the largest coral reef-dwelling bony fish species. However, despite extremely fast growth performance and the considerable economic importance in this species, its genetic regulation of growth remains unknown. Here, we performed the first genome-wide association study (GWAS) for five growth traits in 289 giant groupers using 42,323 single nucleotide polymorphisms (SNPs) obtained by genotyping-by-sequencing (GBS). We identified a total of 36 growth-related SNPs, of which 11 SNPs reached a genome-wide significance level. The phenotypic variance explained by these SNPs varied from 7.09% for body height to 18.42% for body length. Moreover, 22 quantitative trait loci (QTLs) for growth traits, including nine significant QTLs and 13 suggestive QTLs, were found on multiple chromosomes. Interestingly, the QTL (LG17: 6934451) was shared between body weight and body height, while two significant QTLs (LG7: 22596399 and LG15: 11877836) for body length were consistent with the associated regions of total length at the genome-wide suggestive level. Eight potential candidate genes close to the associated SNPs were selected for expression analysis, of which four genes (phosphatidylinositol transfer protein cytoplasmic 1, protein tyrosine phosphatase receptor type E, alpha/beta hydrolase domain-containing protein 17C, and vascular endothelial growth factor A-A) were differentially expressed and involved in metabolism, development, response stress, etc. This study improves our understanding of the complex genetic architecture of growth in the giant grouper. The results contribute to the selective breeding of grouper species and the conservation of coral reef fishes.
Collapse
Affiliation(s)
- Lina Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Bijun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Wenhua Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Xi Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China.
| | - Junhong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yet-Sen University, Guangzhou, 510275, China
| |
Collapse
|
22
|
Zhang G, Li J, Zhang J, Liang X, Zhang X, Wang T, Yin S. Integrated Analysis of Transcriptomic, miRNA and Proteomic Changes of a Novel Hybrid Yellow Catfish Uncovers Key Roles for miRNAs in Heterosis. Mol Cell Proteomics 2019; 18:1437-1453. [PMID: 31092672 PMCID: PMC6601203 DOI: 10.1074/mcp.ra118.001297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/09/2019] [Indexed: 01/14/2023] Open
Abstract
Heterosis is a complex biological phenomenon in which hybridization produces offspring that exhibit superior phenotypic characteristics compared with the parents. Heterosis is widely utilized in agriculture, for example in fish farming; however, its underlying molecular basis remains elusive. To gain a comprehensive and unbiased molecular understanding of fish heterosis, we analyzed the mRNA, miRNA, and proteomes of the livers of three catfish species, Pelteobagrus fulvidraco, P. vachelli, and their hybrid, the hybrid yellow catfish "Huangyou-1" (P. fulvidraco ♀ × P. vachelli ♂). Using next-generation sequencing and mass spectrometry, we show that the nonadditive, homoeolog expression bias and expression level dominance pattern were readily identified at the transcriptional, post-transcriptional, or protein levels, providing the evidence for the widespread presence of dominant models during hybridization. A number of predicted miRNA-mRNA-protein pairs were found and validated by qRT-PCR and PRM assays. Furthermore, several diverse key pathways were identified, including immune defense, metabolism, digestion and absorption, and cell proliferation and development, suggesting the vital mechanisms involved in the generation of the heterosis phenotype in progenies. We propose that the high parental expression of genes/proteins (growth, nutrition, feeding, and disease resistance) coupled with low parental miRNAs of the offspring, are inherited from the mother or father, thus indicating that the offspring were enriched with the advantages of the father or mother. We provide new and important information about the molecular mechanisms of heterosis, which represents a significant step toward a more complete elucidation of this phenomenon.
Collapse
Affiliation(s)
- Guosong Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; §Key Laboratory for Physiology Biochemistry and Application, School of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, China
| | - Jie Li
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Jiajia Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Xia Liang
- §Key Laboratory for Physiology Biochemistry and Application, School of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, China
| | - Xinyu Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Tao Wang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Shaowu Yin
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China.
| |
Collapse
|
23
|
Li BJ, Zhu ZX, Gu XH, Lin HR, Xia JH. QTL Mapping for Red Blotches in Malaysia Red Tilapia (Oreochromis spp.). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:384-395. [PMID: 30863905 DOI: 10.1007/s10126-019-09888-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Body color is an interesting economic trait in fish. Red tilapia with red blotches may decrease its commercial values. Conventional selection of pure red color lines is a time-consuming and labor-intensive process. To accelerate selection of pure lines through marker-assisted selection, in this study, double-digest restriction site-associated DNA sequencing (ddRAD-seq) technology was applied to genotype a full-sib mapping family of Malaysia red tilapia (Oreochromis spp.) (N = 192). Genome-wide significant quantitative trait locus (QTL)-controlling red blotches were mapped onto two chromosomes (chrLG5 and chrLG15) explaining 9.7% and 8.2% of phenotypic variances by a genome-wide association study (GWAS) and linkage-based QTL mapping. Six SNPs from the chromosome chrLG5 (four), chrLG15 (one), and unplaced supercontig GL831288-1 (one) were significantly associated to the red blotch trait in GWAS analysis. We developed nine microsatellite markers and validated significant correlations between genotypes and blotch data (p < 0.05). Our study laid a foundation for exploring a genetic mechanism of body colors and carrying out genetic improvement for color quality in tilapia.
Collapse
Affiliation(s)
- Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Zong Xian Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
24
|
Wang W, Tan S, Luo J, Shi H, Zhou T, Yang Y, Jin Y, Wang X, Niu D, Yuan Z, Gao D, Dunham R, Liu Z. GWAS Analysis Indicated Importance of NF-κB Signaling Pathway in Host Resistance Against Motile Aeromonas Septicemia Disease in Catfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:335-347. [PMID: 30895402 DOI: 10.1007/s10126-019-09883-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Motile Aeromonas septicemia (MAS) disease caused by a bacterial pathogen, Aeromonas hydrophila, is an emerging but severe disease of catfish. Genetic enhancement of disease resistance is considered to be effective to control the disease. To provide an insight into the genomic basis of MAS disease resistance, in this study, we conducted a genome-wide association study (GWAS) to identify quantitative trait loci (QTL). A total of 1820 interspecific backcross catfish of 7 families were challenged with A. hydrophila, and 382 phenotypic extremes were selected for genotyping with the catfish 690 K SNP arrays. Three QTL on linkage group (LG) 2, 26 and 29 were identified to be significantly associated with MAS resistance. Within these regions, a total of 24 genes had known functions in immunity, 10 of which were involved in NF-κB signaling pathway, suggesting the importance of NF-κB signaling pathway in MAS resistance. In addition, three suggestively significant QTL were identified on LG 11, 17, and 20. The limited numbers of QTL involved in MAS resistance suggests that marker-assisted selection may be a viable approach for catfish breeding.
Collapse
Affiliation(s)
- Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jian Luo
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
25
|
Ali A, Al-Tobasei R, Lourenco D, Leeds T, Kenney B, Salem M. Genome-Wide Association Study Identifies Genomic Loci Affecting Filet Firmness and Protein Content in Rainbow Trout. Front Genet 2019; 10:386. [PMID: 31130980 PMCID: PMC6509548 DOI: 10.3389/fgene.2019.00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Filet quality traits determine consumer satisfaction and affect profitability of the aquaculture industry. Soft flesh is a criterion for fish filet downgrades, resulting in loss of value. Filet firmness is influenced by many factors, including rate of protein turnover. A 50K transcribed gene SNP chip was used to genotype 789 rainbow trout, from two consecutive generations, produced in the USDA/NCCCWA selective breeding program. Weighted single-step GBLUP (WssGBLUP) was used to perform genome-wide association (GWA) analyses to identify quantitative trait loci affecting filet firmness and protein content. Applying genomic sliding windows of 50 adjacent SNPs, 212 and 225 SNPs were associated with genetic variation in filet shear force and protein content, respectively. Four common SNPs in the ryanodine receptor 3 gene (RYR3) affected the aforementioned filet traits; this association suggests common mechanisms underlying filet shear force and protein content. Genes harboring SNPs were mostly involved in calcium homeostasis, proteolytic activities, transcriptional regulation, chromatin remodeling, and apoptotic processes. RYR3 harbored the highest number of SNPs (n = 32) affecting genetic variation in shear force (2.29%) and protein content (4.97%). Additionally, based on single-marker analysis, a SNP in RYR3 ranked at the top of all SNPs associated with variation in shear force. Our data suggest a role for RYR3 in muscle firmness that may be considered for genomic- and marker-assisted selection in breeding programs of rainbow trout.
Collapse
Affiliation(s)
- Ali Ali
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, United States.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Tim Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, United States.,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
26
|
Zhang K, Han M, Liu Y, Lin X, Liu X, Zhu H, He Y, Zhang Q, Liu J. Whole-genome resequencing from bulked-segregant analysis reveals gene set based association analyses for the Vibrio anguillarum resistance of turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2019; 88:76-83. [PMID: 30807856 DOI: 10.1016/j.fsi.2019.02.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Many achievements have been made to develop quantitative trait loci (QTLs) and gene-associated single nucleotide polymorphisms (SNPs) to facilitate practical marker-assisted selection (MAS) in aquatic animals. However, the systematic studies of SNPs associated with extreme threshold traits were poor in populations lacking of parental genomic information. Coupling next generation sequencing with bulked segregant analysis (BSA) should allow identification of numerous associated SNPs with extreme phenotypes. In the present study, using combination of SNP frequency difference and Euclidean distance, we conducted linkage analysis of SNPs located in genes involved in immune responses, and identified markers associated with Vibrio anguillarum resistance in turbot (Scophthalmus maximus). A total of 221 SNPs was found as candidate SNPs between resistant and susceptible individuals. Among these SNPs, 35 loci located in immune related genes were genotyped in verification population and 7 of them showed significant association with V. anguillarum resistance in both alleles and genotypes (P < 0.05). Among these 7 genes, PIK3CA-like, CYLD, VCAM1, RhoB and RhoGEF are involved in PI3K/Akt/mTOR pathway and NF-κB pathway, which influence the efficiency of bacteria entering the host and inflammation. SNP-SNP interaction analysis was performed by generalized multifactor dimensionality reduction (GMDR). The combination of SNP loci in RhoB, PIK3CA-like and ADCY3 showed a significant effect on V. anguillarum resistance with the verification rate in the sequencing population up to 70.8%. Taken all, our findings demonstrated the feasibility of BSA-seq approach in identifying genes responsible for the extreme phenotypes and will aid in performing MAS in turbot.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Xiaohan Lin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China; College of Life Sciences, Yantai University, Yantai, 264005, China
| | - He Zhu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
27
|
Polyadenylation sites and their characteristics in the genome of channel catfish (Ictalurus punctatus) as revealed by using RNA-Seq data. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:248-255. [PMID: 30952021 DOI: 10.1016/j.cbd.2019.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 11/21/2022]
Abstract
Polyadenylation plays important roles in gene expression regulation in eukaryotes, which typically involves cleavage and poly(A) tail addition at the polyadenylation site (PAS) of the pre-mature mRNA. Many eukaryotic genes contain more than one PASs, termed as alternative polyadenylation (APA). As a crucial post-transcriptional regulation, polyadenylation affects various aspects of RNA metabolism such as mRNA stability, translocation, and translation. However, polyadenylation has been rarely studied in teleosts. Here we conducted polyadenylation analysis in channel catfish, a commercially important aquaculture species around the world. Using RNA-Seq data, we identified 20,320 PASs which were classified into 14,500 clusters by merging adjacent PASs. Most of the PASs were found in 3' UTRs, followed by intron regions based on the annotation of channel catfish reference genome. No apparent difference in PAS distribution was observed between the sense and antisense strand of the channel catfish genome. The sequence analysis of nucleotide composition and motif around PASs yielded a highly similar profile among various organisms, suggesting the conservation and importance of polyadenylation in evolution. Using APA genes with more than two PASs, gene ontology enrichment revealed genes particularly involved in RNA binding. Reactome pathway analysis showed the enrichment of the innate immune system, especially neutrophil degranulation.
Collapse
|
28
|
Jiang DL, Gu XH, Li BJ, Zhu ZX, Qin H, Meng ZN, Lin HR, Xia JH. Identifying a Long QTL Cluster Across chrLG18 Associated with Salt Tolerance in Tilapia Using GWAS and QTL-seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:250-261. [PMID: 30737627 DOI: 10.1007/s10126-019-09877-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Understanding the genetic mechanism of osmoregulation is important for the improvement of salt tolerance in tilapia. In our previous study, we have identified a major quantitative trait locus (QTL) region located at 23.0 Mb of chrLG18 in a Nile tilapia line by QTL-seq. However, the conservation of these QTLs in other tilapia populations or species is not clear. In this study, we successfully investigated the QTLs associated with salt tolerance in a mass cross population from the GIFT line of Nile tilapia (Oreochromis niloticus) using a ddRAD-seq-based genome-wide association study (GWAS) and in a full-sib family from the Malaysia red tilapia strain (Oreochromis spp) using QTL-seq. Our study confirmed the major QTL interval that is located at nearly 23.0 Mb of chrLG18 in Nile tilapia and revealed a long QTL cluster across chrLG18 controlling for the salt-tolerant trait in both red tilapia and Nile tilapia. This is the first GWAS analysis on salt tolerance in tilapia. Our finding provides important insights into the genetic architecture of salinity tolerance in tilapia and supplies a basis for fine mapping QTLs, marker-assisted selection, and further detailed functional analysis of the underlying genes for salt tolerance in tilapia.
Collapse
Affiliation(s)
- Dan Li Jiang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zong Xian Zhu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hui Qin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zi Ning Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
29
|
Kong S, Ke Q, Chen L, Zhou Z, Pu F, Zhao J, Bai H, Peng W, Xu P. Constructing a High-Density Genetic Linkage Map for Large Yellow Croaker (Larimichthys crocea) and Mapping Resistance Trait Against Ciliate Parasite Cryptocaryon irritans. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:262-275. [PMID: 30783862 DOI: 10.1007/s10126-019-09878-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is the most economically important marine cage-farming fish in China in the past decade. However, the sustainable development of large yellow croaker aquaculture has been severely hampered by several diseases, of which, the white spot disease caused by ciliate protozoan parasite Cryptocaryon irritans ranks the most damaging disease in large yellow croaker cage farms. To better understand the genetic basis of parasite infection and disease resistance to C. irritans, it is vital to map the traits and localize the underlying candidate genes in L. crocea genome. Here, we constructed a high-density genetic linkage map using double-digest restriction-site associated DNA (ddRAD)-based high-throughput SNP genotyping data of a F1 mapping family, which had been challenged with C. irritans for resistant trait measure. A total of 5261 SNPs was grouped and oriented into 24 linkage groups (LGs), representing 24 chromosomes of L. crocea. The total genetic map length was 1885.67 cM with an average inter-locus distance of 0.36 cM. Quantitative trait loci (QTL) mapping identified seven significant QTLs in four LGs linked to C. irritans disease resistance. Candidate genes underlying disease resistance were identified from the reference genome, including ifnar1, ifngr2, ikbke, and CD112. Comparative genomic analysis between large yellow croaker and the four closely related species revealed high evolutionary conservation of chromosomes, though inter-chromosomal rearrangements do exist. Especially, the croaker genome structure was closer to the medaka genome than stickleback, indicating that the croaker genome might retain the teleost ancestral genome structure. The high-density genetic linkage map provides an important tool and resource for fine mapping, comparative genome analysis, and molecular selective breeding of large yellow croaker.
Collapse
Affiliation(s)
- Shengnan Kong
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Qiaozhen Ke
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhixiong Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
| | - Ji Zhao
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
| | - Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
30
|
Wang Y, Sun G, Zeng Q, Chen Z, Hu X, Li H, Wang S, Bao Z. Predicting Growth Traits with Genomic Selection Methods in Zhikong Scallop (Chlamys farreri). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:769-779. [PMID: 30116982 DOI: 10.1007/s10126-018-9847-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Selective breeding is a common and effective approach for genetic improvement of aquaculture stocks with parental selection as the key factor. Genomic selection (GS) has been proposed as a promising tool to facilitate selective breeding. Here, we evaluated the predictability of four GS methods in Zhikong scallop (Chlamys farreri) through real dataset analyses of four economical traits (e.g., shell length, shell height, shell width, and whole weight). Our analysis revealed that different GS models exhibited variable performance in prediction accuracy depending on genetic and statistical factors, but non-parametric method, including reproducing kernel Hilbert spaces regression (RKHS) and sparse neural networks (SNN), generally outperformed parametric linear method, such as genomic best linear unbiased prediction (GBLUP) and BayesB. Furthermore, we demonstrated that the predictability relied mainly on the heritability regardless of GS methods. The size of training population and marker density also had considerable effects on the predictive performance. In practice, increasing the training population size could better improve the genomic prediction than raising the marker density. This study is the first to apply non-linear model and neural networks for GS in scallop and should be valuable to help develop strategies for aquaculture breeding programs.
Collapse
Affiliation(s)
- Yangfan Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
| | - Guidong Sun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
| | - Qifan Zeng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhihui Chen
- Division of Cell and Developmental Biology, College of Life Science, University of Dundee, Dundee, DD1 4HN, UK
| | - Xiaoli Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Hengde Li
- Ministry of Agriculture Key Laboratory of Aquatic Genomics, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Center for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
31
|
Tan S, Wang W, Zhong X, Tian C, Niu D, Bao L, Zhou T, Jin Y, Yang Y, Yuan Z, Gao D, Dunham R, Liu Z. Increased Alternative Splicing as a Host Response to Edwardsiella ictaluri Infection in Catfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:729-738. [PMID: 30014301 DOI: 10.1007/s10126-018-9844-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/04/2018] [Indexed: 05/26/2023]
Abstract
Alternative splicing is the process of generating multiple transcripts from a single pre-mRNA used by eukaryotes to regulate gene expression and increase proteomic complexity. Although alternative splicing profiles have been well studied in mammalian species, they have not been well studied in aquatic species, especially after biotic stresses. In the present study, genomic information and RNA-Seq datasets were utilized to characterize alternative splicing profiles and their induced changes after bacterial infection with Edwardsiella ictaluri in channel catfish (Ictalurus punctatus). A total of 27,476 alternative splicing events, derived from 9694 genes, were identified in channel catfish. Exon skipping was the most abundant while mutually exclusive exon was the least abundant type of alternative splicing. Alternative splicing was greatly induced by E. ictaluri infection with 21.9% increase in alternative splicing events. Interestingly, genes involved in RNA binding and RNA splicing themselves were significantly enriched in differentially alternatively spliced genes after infection. Sequence analyses of splice variants of a representative alternatively spliced gene, splicing factor srsf2, revealed that certain spliced transcripts may undergo nonsense-mediated decay (NMD), suggesting functional significance of the induced alternative splicing. Although statistical analysis was not possible with such large datasets, results from quantitative real-time PCR from representative differential alternative splicing events provided general validation of the bacterial infection-induced alternative splicing. This is the first comprehensive study of alternative splicing and its changes in response to bacterial infection in fish species, providing insights into the molecular mechanisms of host responses to biotic stresses.
Collapse
Affiliation(s)
- Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoxiao Zhong
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- College of Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
32
|
Healy TM, Brennan RS, Whitehead A, Schulte PM. Tolerance traits related to climate change resilience are independent and polygenic. GLOBAL CHANGE BIOLOGY 2018; 24:5348-5360. [PMID: 29995321 DOI: 10.1111/gcb.14386] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 05/21/2023]
Abstract
The resilience of organisms to climate change through adaptive evolution is dependent on the extent of genetically based variation in key phenotypic traits and the nature of genetic associations between them. For aquatic animals, upper thermal tolerance and hypoxia tolerance are likely to be a important determinants of sensitivity to climate change. To determine the genetic basis of these traits and to detect associations between them, we compared naturally occurring populations of two subspecies of Atlantic killifish, Fundulus heteroclitus, that differ in both thermal and hypoxia tolerance. Multilocus association mapping demonstrated that 47 and 35 single nucleotide polymorphisms (SNPs) explained 43.4% and 51.9% of variation in thermal and hypoxia tolerance, respectively, suggesting that genetic mechanisms underlie a substantial proportion of variation in each trait. However, no explanatory SNPs were shared between traits, and upper thermal tolerance varied approximately linearly with latitude, whereas hypoxia tolerance exhibited a steep phenotypic break across the contact zone between the subspecies. These results suggest that upper thermal tolerance and hypoxia tolerance are neither phenotypically correlated nor genetically associated, and thus that rates of adaptive change in these traits can be independently fine-tuned by natural selection. This modularity of important traits can underpin the evolvability of organisms to complex future environmental change.
Collapse
Affiliation(s)
- Timothy M Healy
- The University of British Columbia, Department of Zoology, Vancouver, British Columbia, Canada
| | - Reid S Brennan
- Department of Environmental Toxicology, University of California-Davis, Davis, California
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California-Davis, Davis, California
| | - Patricia M Schulte
- The University of British Columbia, Department of Zoology, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Zhou Z, Chen L, Dong C, Peng W, Kong S, Sun J, Pu F, Chen B, Feng J, Xu P. Genome-Scale Association Study of Abnormal Scale Pattern in Yellow River Carp Identified Previously Known Causative Gene in European Mirror Carp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:573-583. [PMID: 29882019 DOI: 10.1007/s10126-018-9827-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Common carp (Cyprinus carpio) is one of the most widely studied fish species due to its great economic value and strong environmental adaptability. Scattered scale, a typical phenotype of the mirror carp that is derived from Europe, has never been observed in the Yellow River carp previously. We recently identified approximately one fourth of the F1 progenies displaying scattered scale in a full-sib Yellow River carp family in our breeding program, despite both parents that showed wild type with normal scale patterns. This family provides us unique materials to investigate the genetic basis underlying the abnormal scale mutant in Yellow River carp population. Genome-wide association study (GWAS) and association mapping were performed based on genome-wide single nucleotide polymorphisms (SNP) genotyped with common carp 250 K SNP genotyping array in 82 samples of the Yellow River carp family. We identified a 1.4 Mb genome region that was significantly associated with abnormal scattered scale patterns. We further identified a deletion mutation in fibroblast growth factor receptor 1 a1 (fgfr1a1) gene within this genome region. Amplification and sequencing analysis of this gene revealed a 311-bp deletion in intron 10 and exon 11, which proved that fgfr1a1 could be the causal gene responsible for abnormal scattered scale in the Yellow River carp family. Since similar fragment mutation with 306-bp and 310-bp deletions had been previously reported as causal mutation of scattered scale patterns in the mirror carp, we speculate that either the deletion mutation was introduced from Europe-derived mirror carp or the deletion independently occurred in the mutation hotspot in fgfr1a1 gene. The results provided insights into the genetic basis of scale pattern mutant in Yellow River carp population, which would help us to eliminate the recessive allele of the abnormal scale patterns in Yellow River carp population by molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Zhixiong Zhou
- College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- College of Fishery, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Chuanju Dong
- College of Fishery, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Shengnan Kong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- College of Fishery, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jinsheng Sun
- College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jianxin Feng
- Henan Academy of Fishery Science, Zhengzhou, 450044, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
34
|
Liu Y, Lu S, Liu F, Shao C, Zhou Q, Wang N, Li Y, Yang Y, Zhang Y, Sun H, Zheng W, Chen S. Genomic Selection Using BayesCπ and GBLUP for Resistance Against Edwardsiella tarda in Japanese Flounder (Paralichthys olivaceus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:559-565. [PMID: 29943315 DOI: 10.1007/s10126-018-9839-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
The Japanese flounder is one of the most widely farmed economic flatfish species throughout eastern Asia including China, Korea, and Japan. Edwardsiella tarda is a major species of pathogenic bacteria that causes ascites disease and, consequently, a huge economy loss for Japanese flounder farming. After generation selection, traditional breeding methods can hardly improve the E. tarda resistance effectively. Genomic selection is an effective way to predict the breeding potential of parents and has rarely been used in aquatic breeding. In this study, we chose 931 individuals from 90 families, challenged by E. tarda from 2013 to 2015 as a reference population and 71 parents of these families as selection candidates. 1,934,475 markers were detected via genome sequencing and applied in this study. Two different methods, BayesCπ and GBLUP, were used for genomic prediction. In the reference population, two methods led to the same accuracy (0.946) and Pearson's correlation results between phenotype and genomic estimated breeding value (GEBV) of BayesCπ and GBLUP were 0.912 and 0.761, respectively. In selection candidates, GEBVs from two methods were highly similar (0.980). A comparison of GEBV with the survival rate of families that were structured by selection candidates showed correlations of 0.662 and 0.665, respectively. This study established a genomic selection method for the Japanese flounder and for the first time applied this to E. tarda resistance breeding.
Collapse
Affiliation(s)
- Yang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Sheng Lu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Feng Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Marine and Fishery Institute of Zhejiang Ocean University, Zhoushan, 316021, China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qian Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yangzhen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yingming Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yingping Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Hejun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Weiwei Zheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
35
|
Zhou T, Yuan Z, Tan S, Jin Y, Yang Y, Shi H, Wang W, Niu D, Gao L, Jiang W, Gao D, Liu Z. A Review of Molecular Responses of Catfish to Bacterial Diseases and Abiotic Stresses. Front Physiol 2018; 9:1113. [PMID: 30210354 PMCID: PMC6119772 DOI: 10.3389/fphys.2018.01113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022] Open
Abstract
Catfish is one of the major aquaculture species in the United States. However, the catfish industry is threatened by several bacterial diseases such as enteric septicemia of catfish (ESC), columnaris disease and Aeromonas disease, as well as by abiotic stresses such as high temperature and low oxygen. Research has been conducted for several decades to understand the host responses to these diseases and abiotic stresses. With the development of sequencing technologies, and the application of genome-wide association studies in aquaculture species, significant progress has been made. This review article summarizes recent progress in understanding the molecular responses of catfish after bacterial infection and stress challenges, and in understanding of genomic and genetic basis for disease resistance and stress tolerance.
Collapse
Affiliation(s)
- Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Lei Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Wansheng Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
36
|
Shi H, Zhou T, Wang X, Yang Y, Wu C, Liu S, Bao L, Li N, Yuan Z, Jin Y, Tan S, Wang W, Zhong X, Qin G, Geng X, Gao D, Dunham R, Liu Z. Genome-wide association analysis of intra-specific QTL associated with the resistance for enteric septicemia of catfish. Mol Genet Genomics 2018; 293:1365-1378. [PMID: 29967962 DOI: 10.1007/s00438-018-1463-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Disease resistance is one of the most important traits for aquaculture industry. For catfish industry, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the most severe disease, causing enormous economic losses every year. In this study, we used three channel catfish families with 900 individuals (300 fish per family) and the 690K catfish SNP array, and conducted a genome-wide association study to detect the quantitative trait loci (QTL) associated with ESC resistance. Three significant QTL, with two of located on LG1 and one on LG26, and three suggestive QTL located on LG1, LG3, and LG21, respectively, were identified to be associated with ESC resistance. With a well-assembled- and -annotated reference genome sequence, genes around the involved QTL regions were identified. Among these genes, 37 genes had known functions in immunity, which may be involved in ESC resistance. Notably, nlrc3 and nlrp12 identified here were also found in QTL regions of ESC resistance in the channel catfish × blue catfish interspecific hybrid system, suggesting this QTL was operating within both intra-specific channel catfish populations and interspecific hybrid backcross populations. Many of the genes of the Class I MHC pathway, for mediated antigen processing and presentation, were found in the QTL regions. The positional correlation found in this study and the expressional correlation found in previous studies indicated that Class I MHC pathway was significantly associated with ESC resistance. This study validated one QTL previously identified using the second and fourth generation of the interspecific hybrid backcross progenies, and identified five additional QTL among channel catfish families. Taken together, it appears that there are only a few major QTL for ESC disease resistance, making marker-assisted selection an effective approach for genetic improvements of ESC resistance.
Collapse
Affiliation(s)
- Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Chenglong Wu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoxiao Zhong
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Guyu Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xin Geng
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
37
|
Yang Y, Fu Q, Wang X, Liu Y, Zeng Q, Li Y, Gao S, Bao L, Liu S, Gao D, Dunham R, Liu Z. Comparative transcriptome analysis of the swimbladder reveals expression signatures in response to low oxygen stress in channel catfish, Ictalurus punctatus. Physiol Genomics 2018; 50:636-647. [PMID: 29799804 DOI: 10.1152/physiolgenomics.00125.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Channel catfish is the leading aquaculture species in the US, and one of the reasons for its application in aquaculture is its relatively high tolerance against hypoxia. However, hypoxia can still cause huge economic losses to the catfish industry. Studies on hypoxia tolerance, therefore, are important for aquaculture. Fish swimbladder has been considered as an accessory respiration organ surrounded by a dense capillary countercurrent exchange system. In this regard, we conducted RNA-Seq analysis with swimbladder samples of catfish under hypoxic and normal conditions to determine if swimbladder was responsive to low oxygen treatment and to reveal genes, their expression patterns, and pathways involved in hypoxia responses in catfish. A total of 155 differentially expressed genes (DEGs) were identified from swimbladder of adult catfish, whereas a total of 2,127 DEGs were identified from swimbladder of fingerling catfish under hypoxic condition as compared with untreated controls. Subsequent pathway analysis revealed that many DEGs under hypoxia were involved in HIF signaling pathway ( nos2, eno2, camk2d2, prkcb, cdkn1a, eno1, and tfrc), MAPK signaling pathway (voltage-dependent calcium channel subunit genes), PI3K/Akt/mTOR signaling pathway ( itga6, g6pc, and cdkn1a), Ras signaling pathway ( efna3 and ksr2), and signaling by VEGF ( fn1, wasf3, and hspb1) in catfish swimbladder. This study provided insights into regulation of gene expression and their involved gene pathways in catfish swimbladder in response to low oxygen stresses.
Collapse
Affiliation(s)
- Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Qiang Fu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama.,Marine Science and Engineering College, Qingdao Agricultural University , Qingdao , China
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Sen Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University , Syracuse, New York
| |
Collapse
|
38
|
GWAS analysis using interspecific backcross progenies reveals superior blue catfish alleles responsible for strong resistance against enteric septicemia of catfish. Mol Genet Genomics 2018; 293:1107-1120. [PMID: 29737402 DOI: 10.1007/s00438-018-1443-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Infectious diseases pose significant threats to the catfish industry. Enteric septicemia of catfish (ESC) caused by Edwardsiella ictaluri is the most devastating disease for catfish aquaculture, causing huge economic losses annually. Channel catfish and blue catfish exhibit great contrast in resistance against ESC, with channel catfish being highly susceptible and blue catfish being highly resistant. As such, the interspecific backcross progenies provide an ideal system for the identification of quantitative trait locus (QTL). We previously reported one significant QTL on linkage group (LG) 1 using the third-generation backcrosses, but the number of founders used to make the second- and third-generation backcross progenies was very small. Although the third-generation backcross progenies provided a greater power for fine mapping than the first-generation backcrosses, some major QTL for disease resistance may have been missing due to the small numbers of founders used to produce the higher generation backcrosses. In this study, we performed a genome-wide association study using first-generation backcrosses with the catfish 690 K SNP arrays to identify additional ESC disease resistance QTL, especially those at the species level. Two genomic regions on LG1 and LG23 were determined to be significantly associated with ESC resistance as revealed by a mixed linear model and family-based association test. Examination of the resistance alleles indicated their origin from blue catfish, indicating that at least two major disease resistance loci exist among blue catfish populations. Upon further validation, markers linked with major ESC disease resistance QTL should be useful for marker-assisted introgression, allowing development of highly ESC resistant breeds of catfish.
Collapse
|
39
|
Li N, Zhou T, Geng X, Jin Y, Wang X, Liu S, Xu X, Gao D, Li Q, Liu Z. Identification of novel genes significantly affecting growth in catfish through GWAS analysis. Mol Genet Genomics 2017; 293:587-599. [PMID: 29230585 DOI: 10.1007/s00438-017-1406-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/07/2017] [Indexed: 12/01/2022]
Abstract
Growth is the most important economic trait in aquaculture. Improvements in growth-related traits can enhance production, reduce costs and time to produce market-size fish. Catfish is the major aquaculture species in the United States, accounting for 65% of the US finfish production. However, the genes underlying growth traits in catfish were not well studied. Currently, the majority of the US catfish industry uses hybrid catfish derived from channel catfish female mated with blue catfish male. Interestingly, channel catfish and blue catfish exhibit differences in growth-related traits, and therefore the backcross progenies provide an efficient system for QTL analysis. In this study, we conducted a genome-wide association study for catfish body weight using the 250 K SNP array with 556 backcross progenies generated from backcross of male F1 hybrid (female channel catfish × male blue catfish) with female channel catfish. A genomic region of approximately 1 Mb on linkage group 5 was found to be significantly associated with body weight. In addition, four suggestively associated QTL regions were identified on linkage groups 1, 2, 23 and 24. Most candidate genes in the associated regions are known to be involved in muscle growth and bone development, some of which were reported to be associated with obesity in humans and pigs, suggesting that the functions of these genes may be evolutionarily conserved in controlling growth. Additional fine mapping or functional studies should allow identification of the causal genes for fast growth in catfish, and elucidation of molecular mechanisms of regulation of growth in fish.
Collapse
Affiliation(s)
- Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xin Geng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoyan Xu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qi Li
- The Shellfish Genetics and Breeding Laboratory, Fisheries College, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Zhanjiang Liu
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
40
|
Fu Q, Yang Y, Li C, Zeng Q, Zhou T, Li N, Liu Y, Liu S, Liu Z. The CC and CXC chemokine receptors in channel catfish (Ictalurus punctatus) and their involvement in disease and hypoxia responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:241-251. [PMID: 28842182 DOI: 10.1016/j.dci.2017.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Chemokines are vital regulators of cell mobilization for immune surveillance, inflammation, and development. Chemokines signal through binding to their receptors that are a superfamily of seven-transmembrane domain G-coupled receptors. Recently, a complete repertoire of both CC and CXC chemokines have been identified in channel catfish, but nothing is known about their receptors. In this study, a set of 29 CC chemokine receptor (CCR) genes and 8 CXC chemokine receptor (CXCR) genes were identified and annotated from the channel catfish genome. Extensive phylogenetic and comparative genomic analyses were conducted to annotate these genes, revealing fish-specific CC chemokine receptors, and lineage-specific tandem duplications of chemokine receptors in the teleost genomes. With 29 genes, the channel catfish genome harbors the largest numbers of CC chemokine receptors among all the genomes characterized. Analysis of gene expression after bacterial infections indicated that the chemokine receptors were regulated in a gene-specific manner. Most differentially expressed chemokine receptors were up-regulated after Edwardsiella ictaluri and Flavobacterium columnare infection. Among which, CXCR3 and CXCR4 were observed to participate in immune responses to both bacterial infections, indicating their potential roles in catfish immune activities. In addition, CXCR3.2 was significantly up-regulated in ESC-susceptible fish, and CXCR4b was mildly induced in ESC-resistant fish, further supporting the significant roles of CXCR3 and CXCR4 in catfish immune responses. CXCR4b and CCR9a were both up-regulated not only after bacterial infection, but also after hypoxia stress, providing the linkage between bacterial infection and low oxygen stresses. These results should be valuable for comparative immunological studies and provide insights into their roles in disease and stress responses.
Collapse
Affiliation(s)
- Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
41
|
Geng X, Liu S, Yuan Z, Jiang Y, Zhi D, Liu Z. A Genome-Wide Association Study Reveals That Genes with Functions for Bone Development Are Associated with Body Conformation in Catfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:570-578. [PMID: 28971324 DOI: 10.1007/s10126-017-9775-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Body conformation is of great scientific and commercial interest for aquaculture fish species because it affects biological adaptation of the organism to environments, and is of economic importance to the aquaculture industry considering its direct effect on fillet yield. Catfish is the primary aquaculture species in the USA. Two major species used in the aquaculture industry, channel catfish and blue catfish, differ in body shape and therefore the backcross progenies serve as a good model for quantitative trait locus (QTL) analysis. Here, a genome-wide association study (GWAS) with hybrid catfish was conducted to identify the QTL for body conformation, including deheaded body length (DBL), body length (BL), body depth (BD), and body breadth (BB), which were all standardized by cubic root of body weight. Overall, the results indicate that the traits are polygenic. For DBL, linkage group (LG) 2 and LG 24 contain significant QTL, and LG 13 and LG 26 contain suggestively associated QTL (-log10(P value) > 4.5). Compared with DBL, additional SNPs were identified to be associated with body length on LG 2, LG 7, and LG 18. Although no significant QTL for body depth was found, three suggestively associated QTLs were identified on LG 5, LG 13, and LG 14. No SNP for body breadth reached the threshold for suggestive association. Genes close to the associated SNPs were determined, many of which are known to be involved in bone development. This work therefore provides the basis for future identification of causal genes for the control of body conformation.
Collapse
Affiliation(s)
- Xin Geng
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yanliang Jiang
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Degui Zhi
- School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhanjiang Liu
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
42
|
Liu Y, Wei M, Guo H, Shao C, Meng L, Xu W, Wang N, Wang L, Power DM, Hou J, Mahboob S, Cui Z, Yang Y, Li Y, Zhao F, Chen S. Locus Mapping, Molecular Cloning, and Expression Analysis of rps6kb2, a Novel Metamorphosis-Related Gene in Chinese Tongue Sole (Cynoglossus semilaevis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:497-516. [PMID: 28779262 DOI: 10.1007/s10126-017-9769-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Flatfish metamorphosis denotes the extraordinary transformation of a symmetric pelagic larva into an asymmetric benthic juvenile. This unique process involves eye migration, a 90° rotation in posture, and asymmetrical pigmentation for adaptation to a benthic lifestyle. In the present study, we used genetics to map a metamorphosis-related locus (q-10M) in the male linkage group (LG10M), a small interval of 0.9 cM corresponding to a 1.8 M-bp physical area in chromosome 9 in the Chinese tongue sole (Cynoglossus semilaevis). Combined with single-marker analysis, ribosomal protein S6 kinase 2 (rps6kb2) a member of the family of AGC kinases was identified as a novel metamorphosis-related candidate gene. Its expression pattern during metamorphosis was determined by quantitative RT-PCR and whole-mount in situ hybridization analysis. rps6kb2 gene was significantly expressed in metamorphic climax stage larvae and distributed in all the tissues transforming during metamorphosis, including tail, jaw, eye and skin of larvae. The results suggest that rps6kb2 has a general role in tissue transformations during flatfish metamorphosis including tail changes, skull remodeling, eye migration, and asymmetrical pigmentation.
Collapse
Affiliation(s)
- Yang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Min Wei
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Hua Guo
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Liang Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Deborah M Power
- College of Fisheries and Life Science, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, 38000, Pakistan
| | - Zhongkai Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, China
| | - Yingming Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yangzhen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fazhen Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songlin Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|