1
|
Bhassu S, Shama M, Tiruvayipati S, Soo TCC, Ahmed N, Yusoff K. Microbes and pathogens associated with shrimps - implications and review of possible control strategies. FRONTIERS IN MARINE SCIENCE 2024; 11:1397708. [PMID: 39498300 PMCID: PMC11534305 DOI: 10.3389/fmars.2024.1397708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Shrimp aquaculture has been growing rapidly over the last three decades. However, high-density aquaculture together with environmental degradation has led to increased incidence of shrimp infections. Thus, devising and implementing effective strategies to predict, diagnose and control the spread of infections of shrimps are crucial, also to ensure biosecurity and sustainability of the food industry. With the recent advancements in biotechnology, more attention has been given to develop novel promising therapeutic tools with potential to prevent disease occurrence and better manage shrimp health. Furthermore, owing to the advent of the next-generation sequencing (NGS) platforms, it has become possible to analyze the genetic basis of susceptibility or resistance of different stocks of shrimps to infections and how sustainable aquaculture could be made free of shrimp diseases.
Collapse
Affiliation(s)
- Subha Bhassu
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
- Malaysian Genome Vaccine Institute, National Institute Biotechnology Malaysia, Bangi, Selangor, Malaysia
| | - Maryam Shama
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Suma Tiruvayipati
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Chiew Christie Soo
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Khatijah Yusoff
- Malaysian Genome Vaccine Institute, National Institute Biotechnology Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Garcia BF, Mastrochirico-Filho VA, Gallardo-Hidalgo J, Campos-Montes GR, Medrano-Mendoza T, Rivero-Martínez PV, Caballero-Zamora A, Hashimoto DT, Yáñez JM. A high-density linkage map and sex-determination loci in Pacific white shrimp (Litopenaeus vannamei). BMC Genomics 2024; 25:565. [PMID: 38840101 PMCID: PMC11155064 DOI: 10.1186/s12864-024-10431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Expansion of genomic resources for the Pacific white shrimp (Litopenaeus vannamei), such as the construction of dense genetic linkage maps, is crucial for the application of genomic tools in order to improve economically relevant traits. Sexual dimorphism exists in Pacific white shrimp, and the mapping of the sex-determination region in this species may help in future reproductive applications. We have constructed male, female, and sex-averaged high-density genetic maps using a 50 K single-nucleotide polymorphism (SNP) array, followed by a genome-wide association study (GWAS) to identify genomic regions associated with sex in white shrimp. RESULTS The genetic map yielded 15,256 SNPs assigned to 44 linkage groups (LG). The lengths of the male, female, and sex-averaged maps were 5,741.36, 5,461.20 and 5,525.26 cM, respectively. LG18 was found to be the largest for both sexes, whereas LG44 was the shortest for males and LG31 for females. A sex-determining region was found in LG31 with 21 statistically significant SNPs. The most important SNP was previously identified as a sex-linked marker and was able to identify 99% of the males and 88% of the females. Although other significant markers had a lower ability to determine sex, putative genes were intercepted or close to them. The oplophorus-luciferin 2-monooxygenase, serine/arginine repetitive matrix protein and spermine oxidase genes were identified as candidates with possible participation in important processes of sexual differentiation in shrimp. CONCLUSIONS Our results provide novel genomic resources for shrimp, including a high-density linkage map and new insights into the sex-determining region in L. vannamei, which may be usefulfor future genetics and reproduction applications.
Collapse
Affiliation(s)
- Baltasar F Garcia
- São Paulo State University (Unesp), Aquaculture Center of UNESP, Jaboticabal, SP, 14884-900, Brazil
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820000, Chile
| | - Vito A Mastrochirico-Filho
- São Paulo State University (Unesp), Aquaculture Center of UNESP, Jaboticabal, SP, 14884-900, Brazil
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820000, Chile
| | | | - Gabriel R Campos-Montes
- Departamento de El Hombre y su Ambiente, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, CDMX, C.P. 04960, México
| | - Thania Medrano-Mendoza
- Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, CDMX, C.P. 04960, México
| | - Psique Victoria Rivero-Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, CDMX, C.P. 04960, México
| | - Alejandra Caballero-Zamora
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, CDMX, C.P. 04960, México
| | - Diogo T Hashimoto
- São Paulo State University (Unesp), Aquaculture Center of UNESP, Jaboticabal, SP, 14884-900, Brazil
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820000, Chile.
| |
Collapse
|
3
|
Perez-Enriquez R, Juárez OE, Galindo-Torres P, Vargas-Aguilar AL, Llera-Herrera R. Improved genome assembly of the whiteleg shrimp Penaeus (Litopenaeus) vannamei using long- and short-read sequences from public databases. J Hered 2024; 115:302-310. [PMID: 38451162 DOI: 10.1093/jhered/esae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The Pacific whiteleg shrimp Penaeus (Litopenaeus) vannamei is a highly relevant species for the world's aquaculture development, for which an incomplete genome is available in public databases. In this work, PacBio long-reads from 14 publicly available genomic libraries (131.2 Gb) were mined to improve the reference genome assembly. The libraries were assembled, polished using Illumina short-reads, and scaffolded with P. vannamei, Feneropenaeus chinensis, and Penaeus monodon genomes. The reference-guided assembly, organized into 44 pseudo-chromosomes and 15,682 scaffolds, showed an improvement from previous reference genomes with a genome size of 2.055 Gb, N50 of 40.14 Mb, L50 of 21, and the longest scaffold of 65.79 Mb. Most orthologous genes (92.6%) of the Arthropoda_odb10 database were detected as "complete," and BRAKER predicted 21,816 gene models; from these, we detected 1,814 single-copy orthologues conserved across the genomic references for Marsupenaeus japonicus, F. chinensis, and P. monodon. Transcriptomic-assembly data aligned in more than 99% to the new reference-guided assembly. The collinearity analysis of the assembled pseudo-chromosomes against the P. vannamei and P. monodon reference genomes showed high conservation in different sets of pseudo-chromosomes. In addition, more than 21,000 publicly available genetic marker sequences were mapped to single-site positions. This new assembly represents a step forward to previously reported P. vannamei assemblies. It will be helpful as a reference genome for future studies on the evolutionary history of the species, the genetic architecture of physiological and sex-determination traits, and the analysis of the changes in genetic diversity and composition of cultivated stocks.
Collapse
Affiliation(s)
- Ricardo Perez-Enriquez
- Aquaculture Program, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, B.C.S., Mexico
| | - Oscar E Juárez
- Aquaculture Program, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, B.C.S., Mexico
- Dirección de Investigación en Acuacultura, Programa de Recursos Genéticos, Instituto Mexicano de Investigación en Pesca y Acuacultura Sustentables, Coyoacán, Ciudad de México, Mexico
| | - Pavel Galindo-Torres
- Aquaculture Program, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, B.C.S., Mexico
| | - Ana Luisa Vargas-Aguilar
- Aquaculture Program, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, B.C.S., Mexico
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Mérida, Yucatán, Mexico
| | - Raúl Llera-Herrera
- Functional Genomics Laboratory, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
4
|
Chen X, Peng M, Yang C, Li Q, Feng P, Zhu W, Zhang Y, Zeng D, Zhao Y. Genome-wide QTL and eQTL mapping reveal genes associated with growth rate trait of the Pacific white shrimp (Litopenaeus vannamei). BMC Genomics 2024; 25:414. [PMID: 38671371 PMCID: PMC11046935 DOI: 10.1186/s12864-024-10328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Growth rate is a crucial economic trait for farmed animals, but the genetic regulation of this trait is largely unknown in non-model organisms such as shrimp. RESULTS In this study, we performed genome-wide phenotypic quantitative trait loci (QTL) and expression quantitative trait loci (eQTL) mapping analyses to identify genes affecting the growth rate of Pacific white shrimp (Litopenaeus vannamei), which is the most commercially-farmed crustacean worldwide. We used RNA-sequencing of 268 individuals in a mapping population, and subsequently validated our findings through gene silencing and shrimp growth experiments. We constructed a high-density genetic linkage map comprising 5533 markers spanning 44 linkage groups, with a total distance of 6205.75 cM and an average marker interval of 1.12 cM. Our analyses identified 11 QTLs significantly correlated with growth rate, and 117,525 eQTLs. By integrating QTL and eQTL data, we identified a gene (metalloreductase STEAP4) highly associated with shrimp growth rate. RNA interference (RNAi) analysis and growth experiments confirmed that STEAP4 was significantly correlated with growth rate in L. vannamei. CONCLUSIONS Our results indicate that the comprehensive analysis of QTL and eQTL can effectively identify genes involved in complex animal traits. This is important for marker-assisted selection (MAS) of animals. Our work contributes to the development of shrimp breeding and available genetic resources.
Collapse
Affiliation(s)
- Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yongde Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
5
|
Qin K, Feng W, Ji Z, Jiang X, Hu Y, Li Y, Che C, Wang C, Mu C, Wang H. Shrimp Cultured in Low-Salt Saline-Alkali Water has a Better Amino Acid Nutrition and Umami─Comparison of Flavors between Saline-Alkali Water- and Seawater-Cultured Litopenaeus vannamei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6585-6592. [PMID: 38494630 DOI: 10.1021/acs.jafc.3c08435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The advantages of Litopenaeus vannamei farming in saline-alkali water have gradually attracted attention, but few studies have focused on its flavor. In this study, L. vannamei cultured in saline-alkali water (SS) and ordinary seawater (CS) (both have a breeding time of 120 days) were selected for analysis (n = 5). High-performance liquid chromatography (HPLC) was used to measure free amino acids and flavoring nucleotides in the muscles of L. vannamei, while the taste activity value (TAV) and equivalent umami concentration (EUC) were used to analyze the degree of umami. The total essential amino acids (TEAA) in the SS group were 238.41 ± 46.24 mg/mL, significantly higher than that in the CS group (107.06 ± 15.65 mg/mL). The total amount of flavor nucleotides in the SS group was 2948.51 ± 233.66 μg/mL, significantly higher than those in the CS group (2530.37 ± 114.67 μg/mL). The content and TAV of some free amino acids (Glu, Cys-s) in the SS group were significantly higher. Meanwhile, due to the significant increase in IMP, the synergistic effect of free amino acids and flavored nucleotides leads to higher EUC. The significant separation of SS and CS samples in principal component analysis (PCA) indicates a significant difference between the two groups. Our results indicate that shrimp cultured in saline-alkali water has a stronger umami. This study enriches the basic theories related to the flavor of salt-alkali water crustaceans.
Collapse
Affiliation(s)
- Kangxiang Qin
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Weihao Feng
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Zhaoxiong Ji
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Xiaosong Jiang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Yun Hu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Yuntao Li
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Chenxi Che
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Huan Wang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315000, China
| |
Collapse
|
6
|
Li K, Zhao S, Guan W, Li KJ. Planktonic bacteria in white shrimp (Litopenaeus vannamei) and channel catfish (Letalurus punetaus) aquaculture ponds in a salt-alkaline region. Lett Appl Microbiol 2021; 74:212-219. [PMID: 34778977 DOI: 10.1111/lam.13600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
Aquaculture in salt-alkaline regions is encouraged in China, and culture of many aquatic species has been introduced into these areas. In this study, we cultured two species, white shrimp (Litopenaeus vannamei) and channel catfish (Letalurus punetaus) separately in aquaculture ponds in a salt-alkaline region in northwest China and assessed the impacts of the aquaculture operations on the planktonic bacterial community in the culture ponds. Culture of both species decreased the planktonic bacterial diversity and altered the bacterial community structure in the aquaculture ponds compared with the source water. Among the 10 dominant bacterial phyla, 8 were significantly correlated with environmental parameters; the exception was Actinobacteriota, the most dominant phylum, and Firmicutes. Proteobacteria and Bacteroidota abundances showed significant positive correlations with alkalinity, whereas Patescibacteria, Cyanobacteria, Planctomycetota, and Verrucomicrobiota abundance were positively correlated with salinity. Linear regression analysis showed that alkalinity was positively correlated with bacterial beta diversity and salinity was negatively correlated with that. In addition, white shrimp aquaculture significantly lowered the alkalinity, which suggests that culture of this species in inland salt-alkaline regions is a potential dealkalization solution.
Collapse
Affiliation(s)
- K Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - S Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - W Guan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - K J Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
7
|
Identification of a Growth-Associated Single Nucleotide Polymorphism (SNP) in Cyclin C of the Giant Tiger Shrimp Penaeus monodon. Biochem Genet 2020; 59:114-133. [PMID: 32780225 DOI: 10.1007/s10528-020-09993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
The full-length cDNA of cyclin C of the giant tiger shrimp Penaeus monodon (PmCyC) was isolated by RACE-PCR. It was 1443 bp in length containing an open reading frame (ORF) of 804 bp and 267 deduced amino acids. Tissue distribution analysis indicated that PmCyC was more abundantly expressed in ovaries and testes than other tissues of female and male juveniles (P < 0.05). A pair of primers was designed, and an amplification product of 403 bp containing an intron of 123 bp was obtained. Polymorphism of amplified PmCyC gene segments of the 5th (3-month-old G5, N = 30) and 7th (5-month-old G7, N = 18) generations of domesticated juveniles was analyzed. Four conserved SNPs (T>C134, T>C188, G>A379, and T>C382) were found within the examined sequences. A TaqMan genotyping assay was developed for detection of a T>C134 SNP. Association analysis indicated that this SNP displayed significant association with body weight (P < 4.2e-10) and total length (P < 2e-09) of the examined G7 P. monodon (N = 419) with an allele substitution effect of 5.02 ± 0.78 g and 1.41 ± 0.19 cm, respectively. Juveniles with C/C134 (22.80 ± 2.51 g and 12.97 ± 0.53 cm, N = 19) and T/C134 (20.41 ± 0.93 g and 12.77 ± 0.21 cm, N = 129) genotypes exhibited a significantly greater average body weight and total length than those with a T/T134 genotype (14.72 ± 0.53 g and 11.37 ± 0.13 cm, N = 271) (P < 0.05).
Collapse
|
8
|
Wang Q, Yu Y, Zhang Q, Luo Z, Zhang X, Xiang J, Li F. The Polymorphism of LvMMD2 and Its Association with Growth Traits in Litopenaeus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:564-571. [PMID: 32578061 DOI: 10.1007/s10126-020-09977-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
The Pacific white shrimp Litopenaeus vannamei is one of the major economic aquaculture species. The growth trait is considered as the most important trait in L. vannamei aquaculture. Identification of the genetic components underlying growth-related traits in L. vannamei could be useful for the selective breeding of growth trait. Our previous work identified several growth-related SNPs by genome-wide association study (GWAS). Based on the assembled genome, we identified a new candidate gene (LvMMD2) beside the associated marker. This gene encodes the progestin and AdipoQ receptor 10 (PAQR10) protein. We further investigate the polymorphisms of LvMMD2 and their association with body weight of L. vannamei. By resequencing the coding region of LvMMD2, a total of 8 SNPs were identified, including 6 synonymous mutations and 2 nonsynonymous mutations. Association analyses based on a population of 322 individuals revealed that several SNPs located in the coding region of LvMMD2 were significantly associated with the body weight, especially the nonsynonymous mutation named as MMD_5 contributed the most association to the trait and it could explain 10.5% of phenotypic variance. In addition, several genes involved in growth and development have been identified as LvMMD2-interacting genes. These findings strongly suggested that LvMMD2 might be an important gene regulating the shrimp growth. More importantly, the MMD_5 could be a promising candidate locus for marker-assisted selection (MAS) of the body weight in L. vannamei.
Collapse
Affiliation(s)
- Quanchao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
9
|
Liu Y, Wang H, Wen H, Shi Y, Zhang M, Qi X, Zhang K, Gong Q, Li J, He F, Hu Y, Li Y. First High-Density Linkage Map and QTL Fine Mapping for Growth-Related Traits of Spotted Sea bass (Lateolabrax maculatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:526-538. [PMID: 32424479 DOI: 10.1007/s10126-020-09973-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Possessing powerful adaptive capacity and a pleasant taste, spotted sea bass (Lateolabrax maculatus) has a broad natural distribution and is one of the most popular mariculture fish in China. However, the genetic improvement program for this fish is still in its infancy. Growth is the most economically important trait and is controlled by quantitative trait loci (QTL); thus, the identification of QTLs and genetic markers for growth-related traits is an essential step for the establishment of marker-assisted selection (MAS) breeding programs. In this study, we report the first high-density linkage map of spotted sea bass constructed by sequencing 333 F1 generation individuals in a full-sib family using 2b-RAD technology. A total of 6883 SNP markers were anchored onto 24 linkage groups, spanning 2189.96 cM with an average marker interval of 0.33 cM. Twenty-four growth-related QTLs, including 13 QTLs for body weight and 11 QTLs for body length, were successfully detected, with phenotypic variance explained (PVE) ranging from 5.1 to 8.6%. Thirty potential candidate growth-related genes surrounding the associated SNPs were involved in cell adhesion, cell proliferation, cytoskeleton reorganization, calcium channels, and neuromodulation. Notably, the fgfr4 gene was detected in the most significant QTL; this gene plays a pivotal role in myogenesis and bone growth. The results of this study may facilitate marker-assisted selection for breeding populations and establish the foundation for further genomic and genetic studies investigating spotted sea bass.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haolong Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Meizhao Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qingli Gong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jifang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Feng He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yanbo Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|