1
|
Zhang Y, Li J, Chu P, Shang R, Yin S, Wang T. Construction of a high-density genetic linkage map and QTL mapping of growth and cold tolerance traits in Takifugu fasciatus. BMC Genomics 2023; 24:645. [PMID: 37891474 PMCID: PMC10604518 DOI: 10.1186/s12864-023-09740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Takifugu fasciatus is an aquaculture species with high economic value. In recent years, problems such as environmental pollution and inbreeding have caused a serious decline in T. fasciatus germplasm resources. In this study, a high-density genetic linkage map was constructed by whole-genome resequencing. The map consists of 4891 bin markers distributed across 22 linkage groups (LGs), with a total genetic coverage of 2381.353 cM and a mean density of 0.535 cM. Quantitative trait locus (QTL) localization analysis showed that a total of 19 QTLs associated with growth traits of T. fasciatus in the genome-wide significance threshold range, distributed on 11 LGs. In addition, 11 QTLs associated with cold tolerance traits were identified, each scattered on a different LG. Furthermore, we used QTL localization analysis to screen out three candidate genes (IGF1, IGF2, ADGRB) related to growth in T. fasciatus. Meanwhile, we screened three candidate genes (HSP90, HSP70, and HMGB1) related to T. fasciatus cold tolerance. Our study can provide a theoretical basis for the selection and breeding of cold-tolerant or fast-growing T. fasciatus.
Collapse
Affiliation(s)
- Ying Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Jie Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Peng Chu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ruhua Shang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
2
|
Zhong Z, Jiang Y, Zhao L, Wang Y, Zhang Z. Establishment and characterization of the ovary cell line derived from two-spot puffer Takifugu bimaculatus and its application for gene editing and marine toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109528. [PMID: 36470397 DOI: 10.1016/j.cbpc.2022.109528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Takifugu bimaculatus is a marine fish with high nutritional value. Its ovary contains tetrodotoxin (TTX) which is a severe neurotoxin that limits its edible value of it. To understand the mechanism of oogenesis and production of TTX in T. bimaculatus, an ovarian cell line named TBO from an adolescent ovary was established. TBO was composed of fibroblast-like cells that expressed the ovarian follicle cells marker gene Foxl2 and highly expressed TTX binding protein 2 (PSTBP2) but did not express the germ cells marker gene Vasa. Therefore, TBO seems to be mainly composed of follicle cells and possibly a small percentage of oocytes. Electroporation was used to successfully transfect the pEGFP-N1 and pNanog-N1 vectors into the TBO cell line with a high transfection efficiency. The morphological changes and survival rates of the exposed cells proved that this cell line was effective for exposure to conotoxins (CTXs), another group of toxins related to food safety. Furthermore, PSTBP2 was knocked out in TBO using CRISPR/Cas9 technology, showing that sgRNA2 could mutate PSTBP2. The results suggested that TBO will be more convenient, efficient, and rapid for reproduction and toxicology investigation, and gene editing. This study laid the groundwork for future research into the fish gonadal cell culture and food-related marine toxins. In conclusion, a cell line has been generated from T. bimaculatus, which might represent a valuable model for fish studies in the fields of toxicology and gene editing.
Collapse
Affiliation(s)
- Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Liping Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Zhong Z, Wang Y, Feng Y, Xu Y, Zhao L, Jiang Y, Zhang Z. The molecular regulation mechanism of dmrt1-based on the establishment of the testis cell line derived from two-spot puffer Takifugu bimaculatus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1475-1494. [PMID: 36445491 DOI: 10.1007/s10695-022-01150-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
The establishment of fish cell lines can provide an important in vitro model for developmental biology, pathology, and genetics and also an effective tool to investigate the interactions and related functions of genes. Two-spot puffer Takifugu bimaculatus is a high economic and nutritional value marine fish in Fujian in recent years. Nevertheless, dmrt1 plays a key role in the male differentiation from invertebrates to vertebrates. To understand the molecular regulatory mechanisms of dmrt1 in T. bimaculatus, a testis cell line called TBTc from a juvenile testis of this organism was established with modified Leibovitz's L-15 medium supplemented with 20% FBS, fish serum, embryo extract, and other growth factors. The TBTc with a stable karyotype can be passaged continuously, which was composed of fibroblast-like cells and expressed the marker genes of male-special cells, dmrt1, and amh, and the absence of vasa expression may rule out the possibility of the presence of germ cells. Therefore, TBTc appeared to consist of the mixture of the Sertoli cell and germ cell of the testis. The dmrt1 was significantly expressed in the testes and slightly expressed in the late embryonic development, illustrating that the dmrt1 may participate in the molecular regulation of gonads development and sex differentiation. With the high transfection efficiency of TBTc by electroporation, the cell lines could be used effectively in the study for the expression of exogenous and endogenous genes. Meanwhile, after the knockdown of dmrt1, the morphological changes and survival rates of cells proved that dmrt1 could affect the growth of testicular cells. Furthermore, with the loss of dmrt1, the expression of male-bias genes amh, sox9, and cyp11a was significantly decreased, and the expression of female-bias genes foxl2, sox3, and cyp19a was increased, which suggested that dmrt1 upregulates amh, sox9, and cyp11a and downregulates foxl2, sox3, and cyp19a to participate in the testis development. As a first fish gonadal cell lines of T. bimaculatus, which can be a more convenient, efficient, and rapid model for the investigation of the expression and function of genes, the results will lay a foundation for the next study of the molecular regulation mechanism in gonadal development and sex determination of fish in the future.
Collapse
Affiliation(s)
- Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yan Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Liping Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Shi Y, Chen B, Kong S, Zeng Q, Li L, Liu B, Pu F, Xu P. Comparative genomics analysis and genome assembly integration with the recombination landscape contribute to Takifugu bimaculatus assembly refinement. Gene 2022; 849:146910. [PMID: 36167181 DOI: 10.1016/j.gene.2022.146910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
Takifugu genus has been brought to the fore in scientific and practical research due to its compact genome, explosive speciation progress and economic value. Here we updated the chromosome-level genome of Takifugu bimaculatus by an ultra-high-density linkage map, a classic and accurate way of chromosome assembly. The map constituted a robust assembly frame, with 92.2% (372.77 Mb) of the draft genome cumulatively placed. With intraspecies and interspecies comparative genomic analysis, we developed a criterion to quantify the differences between assemblies and established a novel way to integrate information from multiple assemblies. The integrated assembly rectified potential mis-assemblies, greatly improving the genome contiguity and correctness. Our results rendered profound information on the genetic recombination of T. bimaculatus and provided new insights into effective genome assembly. The consolidated assembly will be a contributory tool of T. bimaculatus and broadly across the Takifugu by providing a convincing reference for genomic research.
Collapse
Affiliation(s)
- Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Shengnan Kong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qingmin Zeng
- Fisheries Research Institute of Fujian, Xiamen 361000, China
| | - Leibin Li
- Fisheries Research Institute of Fujian, Xiamen 361000, China
| | - Bo Liu
- Fisheries Research Institute of Fujian, Xiamen 361000, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Screening and validation of reference genes for qPCR analysis in gonads and embryos of Takifugu bimaculatus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Molecular Characterization of a New Tetrodotoxin-Binding Protein, Peroxiredoxin-1, from Takifugu bimaculatus. Int J Mol Sci 2022; 23:ijms23063071. [PMID: 35328490 PMCID: PMC8954737 DOI: 10.3390/ijms23063071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Pufferfish are considered a culinary delicacy but require careful preparation to avoid ingestion of the highly toxic tetrodotoxin (TTX), which accumulates in certain tissues. In this study, the tissue distribution of peroxiredoxin-1 from Takifugu bimaculatus was investigated. The peroxiredoxin-1 protein was obtained by in vitro recombinant expression and purification. The recombinant protein had a strong ability to scavenge hydroxyl radicals, protect superhelical DNA plasmids from oxidative damage, and protect L929 cells from H2O2 toxicity through in vitro antioxidant activity. In addition, we verified its ability to bind to tetrodotoxin using surface plasmon resonance techniques. Further, recombinant proteins were found to facilitate the entry of tetrodotoxin into cells. Through these analyses, we identified, for the first time, peroxiredoxin-1 protein from Takifugu bimaculatus as a potential novel tetrodotoxin-binding protein. Our findings provide a basis for further exploration of the application of peroxiredoxin-1 protein and the molecular mechanisms of tetrodotoxin enrichment in pufferfish.
Collapse
|
7
|
Cai S, Pan N, Xu M, Su Y, Qiao K, Chen B, Zheng B, Xiao M, Liu Z. ACE Inhibitory Peptide from Skin Collagen Hydrolysate of Takifugu bimaculatus as Potential for Protecting HUVECs Injury. Mar Drugs 2021; 19:md19120655. [PMID: 34940654 PMCID: PMC8703921 DOI: 10.3390/md19120655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Angiotensin-I-converting enzyme (ACE) is a crucial enzyme or receptor that catalyzes the generation of potent vasopressor angiotensin II (Ang II). ACE inhibitory peptides from fish showed effective ACE inhibitory activity. In this study, we reported an ACE inhibitory peptide from Takifugu bimaculatus (T. bimaculatus), which was obtained by molecular docking with acid-soluble collagen (ASC) hydrolysate of T. bimaculatus. The antihypertensive effects and potential mechanism were conducted using Ang-II-induced human umbilical vein endothelial cells (HUVECs) as a model. The results showed that FNLRMQ alleviated the viability and facilitated apoptosis of Ang-II-induced HUVECs. Further research suggested that FNLRMQ may protect Ang-II-induced endothelial injury by regulating Nrf2/HO-1 and PI3K/Akt/eNOS signaling pathways. This study, herein, reveals that collagen peptide FNLRMQ could be used as a potential candidate compound for antihypertensive treatment, and could provide scientific evidence for the high-value utilization of marine resources including T. bimaculatus.
Collapse
Affiliation(s)
- Shuilin Cai
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (S.C.); (Y.S.)
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
| | - Nan Pan
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
| | - Min Xu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yongchang Su
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (S.C.); (Y.S.)
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
| | - Kun Qiao
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
| | - Bei Chen
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
| | - Bingde Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (S.C.); (Y.S.)
- Correspondence: (B.Z.); (M.X.); (Z.L.)
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (S.C.); (Y.S.)
- Correspondence: (B.Z.); (M.X.); (Z.L.)
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
- Correspondence: (B.Z.); (M.X.); (Z.L.)
| |
Collapse
|
8
|
Gao FX, Lu WJ, Shi Y, Zhu HY, Wang YH, Tu HQ, Gao Y, Zhou L, Gui JF, Zhao Z. Transcriptome profiling revealed the growth superiority of hybrid pufferfish derived from Takifugu obscurus ♀ × Takifugu rubripes ♂. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100912. [PMID: 34601229 DOI: 10.1016/j.cbd.2021.100912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023]
Abstract
Hybridization is an efficient method to breed new strains of aquatic animals. In the present study, we produced a hybrid puffer by crossing female obscure puffer with male tiger puffer. The hybrid puffer could live in fresh water like obscure puffer and exhibited growth superiority. The averaged body weight of 4- and 6-month-old hybrid puffer were respectively 38.06% and 38.93% higher than that of obscure puffer. Then, we analyzed the underlying genetic basis for the growth advantage of hybrid puffer by comparative transcriptome analysis. A total number of 4264 and 1285 differentially expressed genes (DEGs) were respectively identified from pituitary and liver transcriptome profiles between hybrid puffer and obscure puffer. Comprehensive analysis showed that the DEGs related with cell proliferation and differentiation, and protein synthesis and export, specifically showed higher expression levels in hybrid puffer, such as "ECM-receptor interaction", "focal adhesion", "protein export" and "protein processing in endoplasmic reticulum". While the DEGs involved in gametogenesis and carbohydrate and energy metabolism highly expressed in obscure puffer, such as "oxidative phosphorylation", "citrate cycle", "progesterone-mediated oocyte maturation" and "oocyte meiosis". Furthermore, a series of candidate genes related to the growth superiority of hybrid puffer were identified, such as fn1a, ptprc, plcg2, igf1, tgfβ1, bmp4, abl1, col1a2, col1a1a, and myl9a. These results will be beneficial to understand the molecular basis of growth superiority and helpful to the hybrid breeding of pufferfish.
Collapse
Affiliation(s)
- Fan-Xiang Gao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yan Shi
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Hao-Yong Zhu
- Jiangsu Zhongyang Group Company Limited, Haian 226600, China
| | - Yao-Hui Wang
- Jiangsu Zhongyang Group Company Limited, Haian 226600, China
| | - Han-Qing Tu
- Jiangsu Zhongyang Group Company Limited, Haian 226600, China
| | - Yang Gao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China.
| |
Collapse
|
9
|
Zhou Z, Wang M, Yang J, Liu B, Li L, Shi Y, Pu F, Xu P. Genome-wide association analysis reveals genetic variations and candidate genes associated with growth-related traits and condition factor in Takifugu bimaculatus. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Bai S, Wu H, Zhang J, Pan Z, Zhao W, Li Z, Tong C. Genome Assembly of Salicaceae Populus deltoides (Eastern Cottonwood) I-69 Based on Nanopore Sequencing and Hi-C Technologies. J Hered 2021; 112:303-310. [PMID: 33730157 PMCID: PMC8141683 DOI: 10.1093/jhered/esab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
Populus deltoides has important ecological and economic values, widely used in poplar breeding programs due to its superior characteristics such as rapid growth and resistance to disease. Although the genome sequence of P. deltoides WV94 is available, the assembly is fragmented. Here, we reported an improved chromosome-level assembly of the P. deltoides cultivar I-69 by combining Nanopore sequencing and chromosome conformation capture (Hi-C) technologies. The assembly was 429.3 Mb in size and contained 657 contigs with a contig N50 length of 2.62 Mb. Hi-C scaffolding of the contigs generated 19 chromosome-level sequences, which covered 97.4% (418 Mb) of the total assembly size. Moreover, repetitive sequences annotation showed that 39.28% of the P. deltoides genome was composed of interspersed elements, including retroelements (23.66%), DNA transposons (6.83%), and unclassified elements (8.79%). We also identified a total of 44 362 protein-coding genes in the current P. deltoides assembly. Compared with the previous genome assembly of P. deltoides WV94, the current assembly had some significantly improved qualities: the contig N50 increased 3.5-fold and the proportion of gaps decreased from 3.2% to 0.08%. This high-quality, well-annotated genome assembly provides a reliable genomic resource for identifying genome variants among individuals, mining candidate genes that control growth and wood quality traits, and facilitating further application of genomics-assisted breeding in populations related to P. deltoides.
Collapse
Affiliation(s)
- Shengjun Bai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Hainan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jinpeng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhiliang Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Wei Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhiting Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Chunfa Tong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Pappas F, Palaiokostas C. Genotyping Strategies Using ddRAD Sequencing in Farmed Arctic Charr ( Salvelinus alpinus). Animals (Basel) 2021; 11:899. [PMID: 33801139 PMCID: PMC8004150 DOI: 10.3390/ani11030899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Incorporation of genomic technologies into fish breeding programs is a modern reality, promising substantial advances regarding the accuracy of selection, monitoring the genetic diversity and pedigree record verification. Single nucleotide polymorphism (SNP) arrays are the most commonly used genomic tool, but the investments required make them unsustainable for emerging species, such as Arctic charr (Salvelinus alpinus), where production volume is low. The requirement to genotype a large number of animals for breeding practices necessitates cost effective genotyping approaches. In the current study, we used double digest restriction site-associated DNA (ddRAD) sequencing of either high or low coverage to genotype Arctic charr from the Swedish national breeding program and performed analytical procedures to assess their utility in a range of tasks. SNPs were identified and used for deciphering the genetic structure of the studied population, estimating genomic relationships and implementing an association study for growth-related traits. Missing information and underestimation of heterozygosity in the low coverage set were limiting factors in genetic diversity and genomic relationship analyses, where high coverage performed notably better. On the other hand, the high coverage dataset proved to be valuable when it comes to identifying loci that are associated with phenotypic traits of interest. In general, both genotyping strategies offer sustainable alternatives to hybridization-based genotyping platforms and show potential for applications in aquaculture selective breeding.
Collapse
Affiliation(s)
| | - Christos Palaiokostas
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7090, 750 07 Uppsala, Sweden;
| |
Collapse
|
12
|
Liu B, Zhou Z, Bai Y, Yang J, Shi Y, Pu F, Xu P. Genome-Scale Phylogenetic and Population Genetic Studies Provide Insight Into Introgression and Adaptive Evolution of Takifugu Species in East Asia. Front Genet 2021; 12:625600. [PMID: 33692829 PMCID: PMC7937929 DOI: 10.3389/fgene.2021.625600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/07/2021] [Indexed: 12/31/2022] Open
Abstract
As a typical marine adaptive radiation species, most Takifugu species are widely distributed in East Asian offshore, which have diversified morphological characteristics and different ecological habits. The phylogenetic relationship and population structure of the Takifugu species was complicated because of incomplete lineage sorting, widespread hybridization and introgression. Therefore, to systematically clarify the phylogenetic relationships of Takifugu genus, explore the introgression and natural hybridization between different Takifugu species, and detect the selective signatures in the adaptive evolution of diversified traits, whole-genome resequencing was used in 122 Takifugu samples from 10 species. Phylogenetic analysis showed solid sister-group relationships between Takifugu bimaculatus and Takifugu flavidus, Takifugu oblongus, and Takifugu niphobles, Takifugu rubripes, and Takifugu obscurus, Takifugu xanthoptreus, and Takifugu ocellatus. Further admixture analysis indicated the divergence of T. obscurus population and the bidirectional gene flow between T. bimaculatus and T. flavidus. Using species-specific homozygous genetic variance sites, we detected the asymmetric introgression between T. bimaculatus and T. flavidus at China East sea and southern Taiwan Strait. By genome-scale genetic diversity scanning, we detected two copies of syt1, zar1 and tgfbr1 related to the semilunar reproduction rhythm in T. niphobles, involved in memory formation, embryo maturation and female reproduction. Furthermore, we also found lots of T. niphobles specific mutations in CDS region of circadian rhythm related genes and endocrine hormone genes. For Takifugu species, our research provides reliable genetic resources and results for the phylogeny, introgression, hybridization and adaptive evolution, and could be used as a guide for the formulation of the protection and proliferation release policies.
Collapse
Affiliation(s)
- Bo Liu
- Fisheries Research Institute of Fujian, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Junyi Yang
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yue Shi
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Kong S, Zhou Z, Zhou T, Zhao J, Chen L, Lin H, Pu F, Ke Q, Bai H, Xu P. Genome-Wide Association Study of Body Shape-Related Traits in Large Yellow Croaker (Larimichthys crocea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:631-643. [PMID: 32666363 DOI: 10.1007/s10126-020-09983-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is one of the most important cultured marine fish on the southeast coast of China. Its body shape is important for the aquaculture industry since it affects the behavior such as swimming, ingesting, and evading, as well as customer preference. Due to the greater consumer demand of small head, slender body large yellow croaker, selecting and breeding of slender individuals with the assistance of genetic markers will benefit the industry quickly. In this study, several traits were employed to represent body shape, including body depth/body length (BD/BL), body thickness/body length (BT/BL), caudal peduncle depth/caudal peduncle length (CPDLR), tail length/body length (TL/BL), and body area/head area (BA/HA). Genome-wide association study was conducted with a panmictic population of 280 individuals to identify SNP and genes potentially associated with body shape. A set of 20 SNPs on 12 chromosomes were identified to be significantly associated with body shape-related traits. Besides, 5 SNPs were identified to be suggestive associated with CPDLR and BT/BL. Surrounding these SNPs, we found some body shape-related candidate genes, including fabp1, acrv1, bcor, mstn, bambi, and neo1, which involved in lipid metabolism, TGF-β signaling, and BMP pathway and other important regulatory pathways. These results will be useful for the understanding of the genetic basis of body shape formation and helpful for body shape controlling of large yellow croaker by using marker-assisted selection.
Collapse
Affiliation(s)
- Shengnan Kong
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Huanling Lin
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
| | - Qiaozhen Ke
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Huaqiang Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
14
|
Liu Y, Wang H, Wen H, Shi Y, Zhang M, Qi X, Zhang K, Gong Q, Li J, He F, Hu Y, Li Y. First High-Density Linkage Map and QTL Fine Mapping for Growth-Related Traits of Spotted Sea bass (Lateolabrax maculatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:526-538. [PMID: 32424479 DOI: 10.1007/s10126-020-09973-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Possessing powerful adaptive capacity and a pleasant taste, spotted sea bass (Lateolabrax maculatus) has a broad natural distribution and is one of the most popular mariculture fish in China. However, the genetic improvement program for this fish is still in its infancy. Growth is the most economically important trait and is controlled by quantitative trait loci (QTL); thus, the identification of QTLs and genetic markers for growth-related traits is an essential step for the establishment of marker-assisted selection (MAS) breeding programs. In this study, we report the first high-density linkage map of spotted sea bass constructed by sequencing 333 F1 generation individuals in a full-sib family using 2b-RAD technology. A total of 6883 SNP markers were anchored onto 24 linkage groups, spanning 2189.96 cM with an average marker interval of 0.33 cM. Twenty-four growth-related QTLs, including 13 QTLs for body weight and 11 QTLs for body length, were successfully detected, with phenotypic variance explained (PVE) ranging from 5.1 to 8.6%. Thirty potential candidate growth-related genes surrounding the associated SNPs were involved in cell adhesion, cell proliferation, cytoskeleton reorganization, calcium channels, and neuromodulation. Notably, the fgfr4 gene was detected in the most significant QTL; this gene plays a pivotal role in myogenesis and bone growth. The results of this study may facilitate marker-assisted selection for breeding populations and establish the foundation for further genomic and genetic studies investigating spotted sea bass.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haolong Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Meizhao Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qingli Gong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jifang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Feng He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yanbo Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|