1
|
Mormina E, Petracca M, Bommarito G, Piaggio N, Cocozza S, Inglese M. Cerebellum and neurodegenerative diseases: Beyond conventional magnetic resonance imaging. World J Radiol 2017; 9:371-388. [PMID: 29104740 PMCID: PMC5661166 DOI: 10.4329/wjr.v9.i10.371] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/18/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
The cerebellum plays a key role in movement control and in cognition and cerebellar involvement is described in several neurodegenerative diseases. While conventional magnetic resonance imaging (MRI) is widely used for brain and cerebellar morphologic evaluation, advanced MRI techniques allow the investigation of cerebellar microstructural and functional characteristics. Volumetry, voxel-based morphometry, diffusion MRI based fiber tractography, resting state and task related functional MRI, perfusion, and proton MR spectroscopy are among the most common techniques applied to the study of cerebellum. In the present review, after providing a brief description of each technique’s advantages and limitations, we focus on their application to the study of cerebellar injury in major neurodegenerative diseases, such as multiple sclerosis, Parkinson’s and Alzheimer’s disease and hereditary ataxia. A brief introduction to the pathological substrate of cerebellar involvement is provided for each disease, followed by the review of MRI studies exploring structural and functional cerebellar abnormalities and by a discussion of the clinical relevance of MRI measures of cerebellar damage in terms of both clinical status and cognitive performance.
Collapse
Affiliation(s)
- Enricomaria Mormina
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Neuroradiology Unit, Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, 98100 Messina, Italy
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80138 Naples, Italy
| | - Giulia Bommarito
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Niccolò Piaggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
- Department of Neuroradiology, San Martino Hospital, 16132 Genoa, Italy
| | - Sirio Cocozza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|