1
|
Pahud de Mortanges A, Luo H, Shu SZ, Kamath A, Suter Y, Shelan M, Pöllinger A, Reyes M. Orchestrating explainable artificial intelligence for multimodal and longitudinal data in medical imaging. NPJ Digit Med 2024; 7:195. [PMID: 39039248 PMCID: PMC11263688 DOI: 10.1038/s41746-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Explainable artificial intelligence (XAI) has experienced a vast increase in recognition over the last few years. While the technical developments are manifold, less focus has been placed on the clinical applicability and usability of systems. Moreover, not much attention has been given to XAI systems that can handle multimodal and longitudinal data, which we postulate are important features in many clinical workflows. In this study, we review, from a clinical perspective, the current state of XAI for multimodal and longitudinal datasets and highlight the challenges thereof. Additionally, we propose the XAI orchestrator, an instance that aims to help clinicians with the synopsis of multimodal and longitudinal data, the resulting AI predictions, and the corresponding explainability output. We propose several desirable properties of the XAI orchestrator, such as being adaptive, hierarchical, interactive, and uncertainty-aware.
Collapse
Affiliation(s)
| | - Haozhe Luo
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Shelley Zixin Shu
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Amith Kamath
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Yannick Suter
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mohamed Shelan
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexander Pöllinger
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Mauricio Reyes
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Hwang EJ, Park JE, Song KD, Yang DH, Kim KW, Lee JG, Yoon JH, Han K, Kim DH, Kim H, Park CM. 2023 Survey on User Experience of Artificial Intelligence Software in Radiology by the Korean Society of Radiology. Korean J Radiol 2024; 25:613-622. [PMID: 38942455 PMCID: PMC11214921 DOI: 10.3348/kjr.2023.1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 06/30/2024] Open
Abstract
OBJECTIVE In Korea, radiology has been positioned towards the early adoption of artificial intelligence-based software as medical devices (AI-SaMDs); however, little is known about the current usage, implementation, and future needs of AI-SaMDs. We surveyed the current trends and expectations for AI-SaMDs among members of the Korean Society of Radiology (KSR). MATERIALS AND METHODS An anonymous and voluntary online survey was open to all KSR members between April 17 and May 15, 2023. The survey was focused on the experiences of using AI-SaMDs, patterns of usage, levels of satisfaction, and expectations regarding the use of AI-SaMDs, including the roles of the industry, government, and KSR regarding the clinical use of AI-SaMDs. RESULTS Among the 370 respondents (response rate: 7.7% [370/4792]; 340 board-certified radiologists; 210 from academic institutions), 60.3% (223/370) had experience using AI-SaMDs. The two most common use-case of AI-SaMDs among the respondents were lesion detection (82.1%, 183/223), lesion diagnosis/classification (55.2%, 123/223), with the target imaging modalities being plain radiography (62.3%, 139/223), CT (42.6%, 95/223), mammography (29.1%, 65/223), and MRI (28.7%, 64/223). Most users were satisfied with AI-SaMDs (67.6% [115/170, for improvement of patient management] to 85.1% [189/222, for performance]). Regarding the expansion of clinical applications, most respondents expressed a preference for AI-SaMDs to assist in detection/diagnosis (77.0%, 285/370) and to perform automated measurement/quantification (63.5%, 235/370). Most respondents indicated that future development of AI-SaMDs should focus on improving practice efficiency (81.9%, 303/370) and quality (71.4%, 264/370). Overall, 91.9% of the respondents (340/370) agreed that there is a need for education or guidelines driven by the KSR regarding the use of AI-SaMDs. CONCLUSION The penetration rate of AI-SaMDs in clinical practice and the corresponding satisfaction levels were high among members of the KSR. Most AI-SaMDs have been used for lesion detection, diagnosis, and classification. Most respondents requested KSR-driven education or guidelines on the use of AI-SaMDs.
Collapse
Affiliation(s)
- Eui Jin Hwang
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Kyoung Doo Song
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Yang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - June-Goo Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung Hyun Yoon
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyunghwa Han
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Kim
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hwiyoung Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Min Park
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Johansson JV, Engström E. 'Humans think outside the pixels' - Radiologists' perceptions of using artificial intelligence for breast cancer detection in mammography screening in a clinical setting. Health Informatics J 2024; 30:14604582241275020. [PMID: 39155239 DOI: 10.1177/14604582241275020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
OBJECTIVE This study aimed to explore radiologists' views on using an artificial intelligence (AI) tool named ScreenTrustCAD with Philips equipment) as a diagnostic decision support tool in mammography screening during a clinical trial at Capio Sankt Göran Hospital, Sweden. METHODS We conducted semi-structured interviews with seven breast imaging radiologists, evaluated using inductive thematic content analysis. RESULTS We identified three main thematic categories: AI in society, reflecting views on AI's contribution to the healthcare system; AI-human interactions, addressing the radiologists' self-perceptions when using the AI and its potential challenges to their profession; and AI as a tool among others. The radiologists were generally positive towards AI, and they felt comfortable handling its sometimes-ambiguous outputs and erroneous evaluations. While they did not feel that it would undermine their profession, they preferred using it as a complementary reader rather than an independent one. CONCLUSION The results suggested that breast radiology could become a launch pad for AI in healthcare. We recommend that this exploratory work on subjective perceptions be complemented by quantitative assessments to generalize the findings.
Collapse
Affiliation(s)
- Jennifer Viberg Johansson
- Department of Public Health and Caring Sciences, Centre for Research Ethics & Bioethics, Uppsala University, Uppsala, Sweden
| | - Emma Engström
- Institute for Futures Studies, Stockholm, Sweden; Department of Urban Planning and Environment, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
4
|
Cheng CT, Lin HH, Hsu CP, Chen HW, Huang JF, Hsieh CH, Fu CY, Chung IF, Liao CH. Deep Learning for Automated Detection and Localization of Traumatic Abdominal Solid Organ Injuries on CT Scans. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1113-1123. [PMID: 38366294 PMCID: PMC11169164 DOI: 10.1007/s10278-024-01038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Computed tomography (CT) is the most commonly used diagnostic modality for blunt abdominal trauma (BAT), significantly influencing management approaches. Deep learning models (DLMs) have shown great promise in enhancing various aspects of clinical practice. There is limited literature available on the use of DLMs specifically for trauma image evaluation. In this study, we developed a DLM aimed at detecting solid organ injuries to assist medical professionals in rapidly identifying life-threatening injuries. The study enrolled patients from a single trauma center who received abdominal CT scans between 2008 and 2017. Patients with spleen, liver, or kidney injury were categorized as the solid organ injury group, while others were considered negative cases. Only images acquired from the trauma center were enrolled. A subset of images acquired in the last year was designated as the test set, and the remaining images were utilized to train and validate the detection models. The performance of each model was assessed using metrics such as the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value based on the best Youden index operating point. The study developed the models using 1302 (87%) scans for training and tested them on 194 (13%) scans. The spleen injury model demonstrated an accuracy of 0.938 and a specificity of 0.952. The accuracy and specificity of the liver injury model were reported as 0.820 and 0.847, respectively. The kidney injury model showed an accuracy of 0.959 and a specificity of 0.989. We developed a DLM that can automate the detection of solid organ injuries by abdominal CT scans with acceptable diagnostic accuracy. It cannot replace the role of clinicians, but we can expect it to be a potential tool to accelerate the process of therapeutic decisions for trauma care.
Collapse
Affiliation(s)
- Chi-Tung Cheng
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Hou-Hsien Lin
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Po Hsu
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Huan-Wu Chen
- Department of Medical Imaging & Intervention, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Fu Huang
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Hsun Hsieh
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yuan Fu
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - I-Fang Chung
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Hung Liao
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Baeßler B, Engelhardt S, Hekalo A, Hennemuth A, Hüllebrand M, Laube A, Scherer C, Tölle M, Wech T. Perfect Match: Radiomics and Artificial Intelligence in Cardiac Imaging. Circ Cardiovasc Imaging 2024; 17:e015490. [PMID: 38889216 DOI: 10.1161/circimaging.123.015490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cardiovascular diseases remain a significant health burden, with imaging modalities like echocardiography, cardiac computed tomography, and cardiac magnetic resonance imaging playing a crucial role in diagnosis and prognosis. However, the inherent heterogeneity of these diseases poses challenges, necessitating advanced analytical methods like radiomics and artificial intelligence. Radiomics extracts quantitative features from medical images, capturing intricate patterns and subtle variations that may elude visual inspection. Artificial intelligence techniques, including deep learning, can analyze these features to generate knowledge, define novel imaging biomarkers, and support diagnostic decision-making and outcome prediction. Radiomics and artificial intelligence thus hold promise for significantly enhancing diagnostic and prognostic capabilities in cardiac imaging, paving the way for more personalized and effective patient care. This review explores the synergies between radiomics and artificial intelligence in cardiac imaging, following the radiomics workflow and introducing concepts from both domains. Potential clinical applications, challenges, and limitations are discussed, along with solutions to overcome them.
Collapse
Affiliation(s)
- Bettina Baeßler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany (B.B., A. Hekalo, T.W.)
| | - Sandy Engelhardt
- Department of Internal Medicine III, Heidelberg University Hospital, Germany (S.E., M.T.)
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim (S.E., M.T.)
| | - Amar Hekalo
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany (B.B., A. Hekalo, T.W.)
| | - Anja Hennemuth
- Deutsches Herzzentrum der Charité, Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany (A. Hennemuth, M.H., A.L.)
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (A. Hennemuth, M.H., A.L.)
- Fraunhofer Institute for Digital Medicine MEVIS, Berlin, Germany (A. Hennemuth, M.H.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin (A. Hennemuth, M.H., A.L.)
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Germany (A. Hennemuth)
| | - Markus Hüllebrand
- Deutsches Herzzentrum der Charité, Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany (A. Hennemuth, M.H., A.L.)
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (A. Hennemuth, M.H., A.L.)
- Fraunhofer Institute for Digital Medicine MEVIS, Berlin, Germany (A. Hennemuth, M.H.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin (A. Hennemuth, M.H., A.L.)
| | - Ann Laube
- Deutsches Herzzentrum der Charité, Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany (A. Hennemuth, M.H., A.L.)
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (A. Hennemuth, M.H., A.L.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin (A. Hennemuth, M.H., A.L.)
| | - Clemens Scherer
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany (C.S.)
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), Germany (C.S.)
| | - Malte Tölle
- Department of Internal Medicine III, Heidelberg University Hospital, Germany (S.E., M.T.)
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim (S.E., M.T.)
| | - Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany (B.B., A. Hekalo, T.W.)
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany (T.W.)
| |
Collapse
|
6
|
Cheng CT, Ooyang CH, Kang SC, Liao CH. Applications of Deep Learning in Trauma Radiology: A Narrative Review. Biomed J 2024:100743. [PMID: 38679199 DOI: 10.1016/j.bj.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Diagnostic imaging is essential in modern trauma care for initial evaluation and identifying injuries requiring intervention. Deep learning (DL) has become mainstream in medical image analysis and has shown promising efficacy for classification, segmentation, and lesion detection. This narrative review provides the fundamental concepts for developing DL algorithms in trauma imaging and presents an overview of current progress in each modality. DL has been applied to detect free fluid on Focused Assessment with Sonography for Trauma (FAST), traumatic findings on chest and pelvic X-rays, and computed tomography (CT) scans, identify intracranial hemorrhage on head CT, detect vertebral fractures, and identify injuries to organs like the spleen, liver, and lungs on abdominal and chest CT. Future directions involve expanding dataset size and diversity through federated learning, enhancing model explainability and transparency to build clinician trust, and integrating multimodal data to provide more meaningful insights into traumatic injuries. Though some commercial artificial intelligence products are Food and Drug Administration-approved for clinical use in the trauma field, adoption remains limited, highlighting the need for multi-disciplinary teams to engineer practical, real-world solutions. Overall, DL shows immense potential to improve the efficiency and accuracy of trauma imaging, but thoughtful development and validation are critical to ensure these technologies positively impact patient care.
Collapse
Affiliation(s)
- Chi-Tung Cheng
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan Taiwan
| | - Chun-Hsiang Ooyang
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan Taiwan
| | - Shih-Ching Kang
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan Taiwan.
| | - Chien-Hung Liao
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan Taiwan
| |
Collapse
|
7
|
Sarkar N, Kumagai M, Meyr S, Pothapragada S, Unberath M, Li G, Ahmed SR, Smith EB, Davis MA, Khatri GD, Agrawal A, Delproposto ZS, Chen H, Caballero CG, Dreizin D. An ASER AI/ML expert panel formative user research study for an interpretable interactive splenic AAST grading graphical user interface prototype. Emerg Radiol 2024; 31:167-178. [PMID: 38302827 PMCID: PMC11257379 DOI: 10.1007/s10140-024-02202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE The AAST Organ Injury Scale is widely adopted for splenic injury severity but suffers from only moderate inter-rater agreement. This work assesses SpleenPro, a prototype interactive explainable artificial intelligence/machine learning (AI/ML) diagnostic aid to support AAST grading, for effects on radiologist dwell time, agreement, clinical utility, and user acceptance. METHODS Two trauma radiology ad hoc expert panelists independently performed timed AAST grading on 76 admission CT studies with blunt splenic injury, first without AI/ML assistance, and after a 2-month washout period and randomization, with AI/ML assistance. To evaluate user acceptance, three versions of the SpleenPro user interface with increasing explainability were presented to four independent expert panelists with four example cases each. A structured interview consisting of Likert scales and free responses was conducted, with specific questions regarding dimensions of diagnostic utility (DU); mental support (MS); effort, workload, and frustration (EWF); trust and reliability (TR); and likelihood of future use (LFU). RESULTS SpleenPro significantly decreased interpretation times for both raters. Weighted Cohen's kappa increased from 0.53 to 0.70 with AI/ML assistance. During user acceptance interviews, increasing explainability was associated with improvement in Likert scores for MS, EWF, TR, and LFU. Expert panelists indicated the need for a combined early notification and grading functionality, PACS integration, and report autopopulation to improve DU. CONCLUSIONS SpleenPro was useful for improving objectivity of AAST grading and increasing mental support. Formative user research identified generalizable concepts including the need for a combined detection and grading pipeline and integration with the clinical workflow.
Collapse
Affiliation(s)
- Nathan Sarkar
- University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Mitsuo Kumagai
- University of Maryland College Park, 4603 Calvert Rd, College Park, MD, 20740, USA
| | - Samantha Meyr
- University of Maryland College Park, 4603 Calvert Rd, College Park, MD, 20740, USA
| | - Sriya Pothapragada
- University of Maryland College Park, 4603 Calvert Rd, College Park, MD, 20740, USA
| | - Mathias Unberath
- Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Guang Li
- University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Sagheer Rauf Ahmed
- University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
- R Adams Cowley Shock Trauma Center, 22 S Greene St, Baltimore, MD, 21201, USA
| | - Elana Beth Smith
- University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
- R Adams Cowley Shock Trauma Center, 22 S Greene St, Baltimore, MD, 21201, USA
| | | | | | - Anjali Agrawal
- Teleradiology Solutions, 22 Lianfair Road Unit 6, Ardmore, PA, 19003, USA
| | | | - Haomin Chen
- Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | | | - David Dreizin
- University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA.
- R Adams Cowley Shock Trauma Center, 22 S Greene St, Baltimore, MD, 21201, USA.
| |
Collapse
|
8
|
Hua D, Petrina N, Young N, Cho JG, Poon SK. Understanding the factors influencing acceptability of AI in medical imaging domains among healthcare professionals: A scoping review. Artif Intell Med 2024; 147:102698. [PMID: 38184343 DOI: 10.1016/j.artmed.2023.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/29/2023] [Accepted: 10/29/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Artificial intelligence (AI) technology has the potential to transform medical practice within the medical imaging industry and materially improve productivity and patient outcomes. However, low acceptability of AI as a digital healthcare intervention among medical professionals threatens to undermine user uptake levels, hinder meaningful and optimal value-added engagement, and ultimately prevent these promising benefits from being realised. Understanding the factors underpinning AI acceptability will be vital for medical institutions to pinpoint areas of deficiency and improvement within their AI implementation strategies. This scoping review aims to survey the literature to provide a comprehensive summary of the key factors influencing AI acceptability among healthcare professionals in medical imaging domains and the different approaches which have been taken to investigate them. METHODS A systematic literature search was performed across five academic databases including Medline, Cochrane Library, Web of Science, Compendex, and Scopus from January 2013 to September 2023. This was done in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. Overall, 31 articles were deemed appropriate for inclusion in the scoping review. RESULTS The literature has converged towards three overarching categories of factors underpinning AI acceptability including: user factors involving trust, system understanding, AI literacy, and technology receptiveness; system usage factors entailing value proposition, self-efficacy, burden, and workflow integration; and socio-organisational-cultural factors encompassing social influence, organisational readiness, ethicality, and perceived threat to professional identity. Yet, numerous studies have overlooked a meaningful subset of these factors that are integral to the use of medical AI systems such as the impact on clinical workflow practices, trust based on perceived risk and safety, and compatibility with the norms of medical professions. This is attributable to reliance on theoretical frameworks or ad-hoc approaches which do not explicitly account for healthcare-specific factors, the novelties of AI as software as a medical device (SaMD), and the nuances of human-AI interaction from the perspective of medical professionals rather than lay consumer or business end users. CONCLUSION This is the first scoping review to survey the health informatics literature around the key factors influencing the acceptability of AI as a digital healthcare intervention in medical imaging contexts. The factors identified in this review suggest that existing theoretical frameworks used to study AI acceptability need to be modified to better capture the nuances of AI deployment in healthcare contexts where the user is a healthcare professional influenced by expert knowledge and disciplinary norms. Increasing AI acceptability among medical professionals will critically require designing human-centred AI systems which go beyond high algorithmic performance to consider accessibility to users with varying degrees of AI literacy, clinical workflow practices, the institutional and deployment context, and the cultural, ethical, and safety norms of healthcare professions. As investment into AI for healthcare increases, it would be valuable to conduct a systematic review and meta-analysis of the causal contribution of these factors to achieving high levels of AI acceptability among medical professionals.
Collapse
Affiliation(s)
- David Hua
- School of Computer Science, The University of Sydney, Australia; Sydney Law School, The University of Sydney, Australia
| | - Neysa Petrina
- School of Computer Science, The University of Sydney, Australia
| | - Noel Young
- Sydney Medical School, The University of Sydney, Australia; Lumus Imaging, Australia
| | - Jin-Gun Cho
- Sydney Medical School, The University of Sydney, Australia; Western Sydney Local Health District, Australia; Lumus Imaging, Australia
| | - Simon K Poon
- School of Computer Science, The University of Sydney, Australia; Western Sydney Local Health District, Australia.
| |
Collapse
|
9
|
Zhang L, LaBelle W, Unberath M, Chen H, Hu J, Li G, Dreizin D. A vendor-agnostic, PACS integrated, and DICOM-compatible software-server pipeline for testing segmentation algorithms within the clinical radiology workflow. Front Med (Lausanne) 2023; 10:1241570. [PMID: 37954555 PMCID: PMC10637622 DOI: 10.3389/fmed.2023.1241570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Background Reproducible approaches are needed to bring AI/ML for medical image analysis closer to the bedside. Investigators wishing to shadow test cross-sectional medical imaging segmentation algorithms on new studies in real-time will benefit from simple tools that integrate PACS with on-premises image processing, allowing visualization of DICOM-compatible segmentation results and volumetric data at the radiology workstation. Purpose In this work, we develop and release a simple containerized and easily deployable pipeline for shadow testing of segmentation algorithms within the clinical workflow. Methods Our end-to-end automated pipeline has two major components- 1. A router/listener and anonymizer and an OHIF web viewer backstopped by a DCM4CHEE DICOM query/retrieve archive deployed in the virtual infrastructure of our secure hospital intranet, and 2. An on-premises single GPU workstation host for DICOM/NIfTI conversion steps, and image processing. DICOM images are visualized in OHIF along with their segmentation masks and associated volumetry measurements (in mL) using DICOM SEG and structured report (SR) elements. Since nnU-net has emerged as a widely-used out-of-the-box method for training segmentation models with state-of-the-art performance, feasibility of our pipleine is demonstrated by recording clock times for a traumatic pelvic hematoma nnU-net model. Results Mean total clock time from PACS send by user to completion of transfer to the DCM4CHEE query/retrieve archive was 5 min 32 s (± SD of 1 min 26 s). This compares favorably to the report turnaround times for whole-body CT exams, which often exceed 30 min, and illustrates feasibility in the clinical setting where quantitative results would be expected prior to report sign-off. Inference times accounted for most of the total clock time, ranging from 2 min 41 s to 8 min 27 s. All other virtual and on-premises host steps combined ranged from a minimum of 34 s to a maximum of 48 s. Conclusion The software worked seamlessly with an existing PACS and could be used for deployment of DL models within the radiology workflow for prospective testing on newly scanned patients. Once configured, the pipeline is executed through one command using a single shell script. The code is made publicly available through an open-source license at "https://github.com/vastc/," and includes a readme file providing pipeline config instructions for host names, series filter, other parameters, and citation instructions for this work.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Wayne LaBelle
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Mathias Unberath
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Haomin Chen
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jiazhen Hu
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Guang Li
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - David Dreizin
- School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
10
|
Becker M. How to prepare for a bright future of radiology in Europe. Insights Imaging 2023; 14:168. [PMID: 37816908 PMCID: PMC10564684 DOI: 10.1186/s13244-023-01525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/16/2023] [Indexed: 10/12/2023] Open
Abstract
Because artificial intelligence (AI)-powered algorithms allow automated image analysis in a growing number of diagnostic scenarios, some healthcare stakeholders have raised doubts about the future of the entire radiologic profession. Their view disregards not only the role of radiologists in the diagnostic service chain beyond reporting, but also the many multidisciplinary and patient-related consulting tasks for which radiologists are solicited. The time commitment for these non-reporting tasks is considerable but difficult to quantify and often impossible to fulfil considering the current mismatch between workload and workforce in many countries. Nonetheless, multidisciplinary, and patient-centred consulting activities could move up on radiologists' agendas as soon as AI-based tools can save time in daily routine. Although there are many reasons why AI will assist and not replace radiologists as imaging experts in the future, it is important to position the next generation of European radiologists in view of this expected trend. To ensure radiologists' personal professional recognition and fulfilment in multidisciplinary environments, the focus of training should go beyond diagnostic reporting, concentrating on clinical backgrounds, specific communication skills with referrers and patients, and integration of imaging findings with those of other disciplines. Close collaboration between the European Society of Radiology (ESR) and European national radiologic societies can help to achieve these goals. Although each adequate treatment begins with a correct diagnosis, many health politicians see radiologic procedures mainly as a cost factor. Radiologic research should, therefore, increasingly investigate the imaging impact on treatment and outcome rather than focusing mainly on technical improvements and diagnostic accuracy alone.Critical relevance statement Strategies are presented to prepare for a successful future of the radiologic profession in Europe, if AI-powered tools can alleviate the current reporting overload: engaging in multidisciplinary activities (clinical and integrative diagnostics), enhancing the value and recognition of radiologists' role through clinical expertise, focusing radiological research on the impact on diagnosis and outcome, and promoting patient-centred radiology by enhancing communication skills.Key points • AI-powered tools will not replace radiologists but hold promise to reduce the current reporting burden, enabling them to reinvest liberated time in multidisciplinary clinical and patient-related tasks.• The skills and resources for these tasks should be considered when recruiting and teaching the next generation of radiologists, when organising departments and planning staffing.• Communication skills will play an increasing role in both multidisciplinary activities and patient-centred radiology.• The value and importance of a correct and integrative diagnosis and the cost of an incorrect imaging diagnosis should be emphasised when discussing with non-medical stakeholders in healthcare.• The radiologic community in Europe should start now to prepare for a bright future of the profession for the benefit of patients and medical colleagues alike.
Collapse
Affiliation(s)
- Minerva Becker
- Unit of Head and Neck and Maxilofacial Radiology, Division of Radiology, Diagnostic Department, Geneva University Hospitals, University of Geneva, Rue Gabrielle Perret Gentil 4, Geneva 14, CH 1211, Switzerland.
| |
Collapse
|
11
|
Sarkar N, Zhang L, Campbell P, Liang Y, Li G, Khedr M, Khetan U, Dreizin D. Pulmonary contusion: automated deep learning-based quantitative visualization. Emerg Radiol 2023; 30:435-441. [PMID: 37318609 PMCID: PMC10527354 DOI: 10.1007/s10140-023-02149-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE Rapid automated CT volumetry of pulmonary contusion may predict progression to Acute Respiratory Distress Syndrome (ARDS) and help guide early clinical management in at-risk trauma patients. This study aims to train and validate state-of-the-art deep learning models to quantify pulmonary contusion as a percentage of total lung volume (Lung Contusion Index, or auto-LCI) and assess the relationship between auto-LCI and relevant clinical outcomes. METHODS 302 adult patients (age ≥ 18) with pulmonary contusion were retrospectively identified from reports between 2016 and 2021. nnU-Net was trained on manual contusion and whole-lung segmentations. Point-of-care candidate variables for multivariate regression included oxygen saturation, heart rate, and systolic blood pressure on admission. Logistic regression was used to assess ARDS risk, and Cox proportional hazards models were used to determine differences in ICU length of stay and mechanical ventilation time. RESULTS Mean Volume Similarity Index and mean Dice scores were 0.82 and 0.67. Interclass correlation coefficient and Pearson r between ground-truth and predicted volumes were 0.90 and 0.91. 38 (14%) patients developed ARDS. In bivariate analysis, auto-LCI was associated with ARDS (p < 0.001), ICU admission (p < 0.001), and need for mechanical ventilation (p < 0.001). In multivariate analyses, auto-LCI was associated with ARDS (p = 0.04), longer length of stay in the ICU (p = 0.02) and longer time on mechanical ventilation (p = 0.04). AUC of multivariate regression to predict ARDS using auto-LCI and clinical variables was 0.70 while AUC using auto-LCI alone was 0.68. CONCLUSION Increasing auto-LCI values corresponded with increased risk of ARDS, longer ICU admissions, and longer periods of mechanical ventilation.
Collapse
Affiliation(s)
- Nathan Sarkar
- Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD, 21201, USA
| | - Lei Zhang
- Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD, 21201, USA
| | - Peter Campbell
- Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD, 21201, USA
| | - Yuanyuan Liang
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guang Li
- Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD, 21201, USA
| | - Mustafa Khedr
- Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD, 21201, USA
| | - Udit Khetan
- Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD, 21201, USA
| | - David Dreizin
- Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Dreizin D, Zhang L, Sarkar N, Bodanapally UK, Li G, Hu J, Chen H, Khedr M, Khetan U, Campbell P, Unberath M. Accelerating voxelwise annotation of cross-sectional imaging through AI collaborative labeling with quality assurance and bias mitigation. FRONTIERS IN RADIOLOGY 2023; 3:1202412. [PMID: 37485306 PMCID: PMC10362988 DOI: 10.3389/fradi.2023.1202412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
Background precision-medicine quantitative tools for cross-sectional imaging require painstaking labeling of targets that vary considerably in volume, prohibiting scaling of data annotation efforts and supervised training to large datasets for robust and generalizable clinical performance. A straight-forward time-saving strategy involves manual editing of AI-generated labels, which we call AI-collaborative labeling (AICL). Factors affecting the efficacy and utility of such an approach are unknown. Reduction in time effort is not well documented. Further, edited AI labels may be prone to automation bias. Purpose In this pilot, using a cohort of CTs with intracavitary hemorrhage, we evaluate both time savings and AICL label quality and propose criteria that must be met for using AICL annotations as a high-throughput, high-quality ground truth. Methods 57 CT scans of patients with traumatic intracavitary hemorrhage were included. No participant recruited for this study had previously interpreted the scans. nnU-net models trained on small existing datasets for each feature (hemothorax/hemoperitoneum/pelvic hematoma; n = 77-253) were used in inference. Two common scenarios served as baseline comparison- de novo expert manual labeling, and expert edits of trained staff labels. Parameters included time effort and image quality graded by a blinded independent expert using a 9-point scale. The observer also attempted to discriminate AICL and expert labels in a random subset (n = 18). Data were compared with ANOVA and post-hoc paired signed rank tests with Bonferroni correction. Results AICL reduced time effort 2.8-fold compared to staff label editing, and 8.7-fold compared to expert labeling (corrected p < 0.0006). Mean Likert grades for AICL (8.4, SD:0.6) were significantly higher than for expert labels (7.8, SD:0.9) and edited staff labels (7.7, SD:0.8) (corrected p < 0.0006). The independent observer failed to correctly discriminate AI and human labels. Conclusion For our use case and annotators, AICL facilitates rapid large-scale curation of high-quality ground truth. The proposed quality control regime can be employed by other investigators prior to embarking on AICL for segmentation tasks in large datasets.
Collapse
Affiliation(s)
- David Dreizin
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Lei Zhang
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nathan Sarkar
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Uttam K. Bodanapally
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Guang Li
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Jiazhen Hu
- Johns Hopkins University, Baltimore, MD, United States
| | - Haomin Chen
- Johns Hopkins University, Baltimore, MD, United States
| | - Mustafa Khedr
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Udit Khetan
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Peter Campbell
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | | |
Collapse
|