1
|
Wang X, Gao Y, Li CJ, Fang L, Liu GE, Zhao X, Zhang Y, Cai G, Xue G, Liu Y, Wang L, Zhang F, Wang K, Zhang M, Li R, Gao Y, Li J. The single-cell transcriptome and chromatin accessibility datasets of peripheral blood mononuclear cells in Chinese holstein cattle. BMC Genom Data 2023; 24:39. [PMID: 37550629 PMCID: PMC10408222 DOI: 10.1186/s12863-023-01139-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/30/2023] [Indexed: 08/09/2023] Open
Abstract
OBJECTIVES This study was performed in the frame of a more extensive study dedicated to the integrated analysis of the single-cell transcriptome and chromatin accessibility datasets of peripheral blood mononuclear cells (PBMCs) with a large-scale GWAS of 45 complex traits in Chinese Holstein cattle. Lipopolysaccharide (LPS) is a crucial mediator of chronic inflammation to modulate immune responses. PBMCs include primary T and B cells, natural killer (NK) cells, monocytes (Mono), and dendritic cells (DC). How LPS stimulates PBMCs at the single-cell level in dairy cattle remains largely unknown. DATA DESCRIPTION We sequenced 30,756 estimated single cells and mapped 26,141 of them (96.05%) with approximately 60,075 mapped reads per cell after quality control for four whole-blood treatments (no, 2 h, 4 h, and 8 h LPS) by single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq). Finally, 7,107 (no), 9,174 (2 h), 6,741 (4 h), and 3,119 (8 h) cells were generated with ~ 15,000 total genes in the whole population. Therefore, the single-cell transcriptome and chromatin accessibility datasets in this study enable a further understanding of the cell types and functions of PBMCs and their responses to LPS stimulation in vitro.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Xiuxin Zhao
- Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Yuanpei Zhang
- Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Gaozhan Cai
- Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Guanghui Xue
- Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Yan Liu
- Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Lingling Wang
- Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Fan Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kun Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Miao Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Rongling Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yundong Gao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Jianbin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
2
|
Gao Y, Li J, Cai G, Wang Y, Yang W, Li Y, Zhao X, Li R, Gao Y, Tuo W, Baldwin RL, Li CJ, Fang L, Liu GE. Single-cell transcriptomic and chromatin accessibility analyses of dairy cattle peripheral blood mononuclear cells and their responses to lipopolysaccharide. BMC Genomics 2022; 23:338. [PMID: 35501711 PMCID: PMC9063233 DOI: 10.1186/s12864-022-08562-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Gram-negative bacteria are important pathogens in cattle, causing severe infectious diseases, including mastitis. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and crucial mediators of chronic inflammation in cattle. LPS modulations of bovine immune responses have been studied before. However, the single-cell transcriptomic and chromatin accessibility analyses of bovine peripheral blood mononuclear cells (PBMCs) and their responses to LPS stimulation were never reported. Results We performed single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) in bovine PBMCs before and after LPS treatment and demonstrated that seven major cell types, which included CD4 T cells, CD8 T cells, and B cells, monocytes, natural killer cells, innate lymphoid cells, and dendritic cells. Bioinformatic analyses indicated that LPS could increase PBMC cell cycle progression, cellular differentiation, and chromatin accessibility. Gene analyses further showed significant changes in differential expression, transcription factor binding site, gene ontology, and regulatory interactions during the PBMC responses to LPS. Consistent with the findings of previous studies, LPS induced activation of monocytes and dendritic cells, likely through their upregulated TLR4 receptor. NF-κB was observed to be activated by LPS and an increased transcription of an array of pro-inflammatory cytokines, in agreement that NF-κB is an LPS-responsive regulator of innate immune responses. In addition, by integrating LPS-induced differentially expressed genes (DEGs) with large-scale GWAS of 45 complex traits in Holstein, we detected trait-relevant cell types. We found that selected DEGs were significantly associated with immune-relevant health, milk production, and body conformation traits. Conclusion This study provided the first scRNAseq and scATAC-seq data for cattle PBMCs and their responses to the LPS stimulation to the best of our knowledge. These results should also serve as valuable resources for the future study of the bovine immune system and open the door for discoveries about immune cell roles in complex traits like mastitis at single-cell resolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08562-0.
Collapse
Affiliation(s)
- Yahui Gao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.,Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Jianbin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.
| | - Gaozhan Cai
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.,Shandong Ox Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Yujiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Wenjing Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanqin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Xiuxin Zhao
- Shandong Ox Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Rongling Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Yundong Gao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA.
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA.
| |
Collapse
|
3
|
Lu X, Li X, Liu P, Qian X, Miao Q, Peng S. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes. Molecules 2018; 23:molecules23020183. [PMID: 29364829 PMCID: PMC6099653 DOI: 10.3390/molecules23020183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/29/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022] Open
Abstract
With advances in next-generation sequencing(NGS) technologies, a large number of multiple types of high-throughput genomics data are available. A great challenge in exploring cancer progression is to identify the driver genes from the variant genes by analyzing and integrating multi-types genomics data. Breast cancer is known as a heterogeneous disease. The identification of subtype-specific driver genes is critical to guide the diagnosis, assessment of prognosis and treatment of breast cancer. We developed an integrated frame based on gene expression profiles and copy number variation (CNV) data to identify breast cancer subtype-specific driver genes. In this frame, we employed statistical machine-learning method to select gene subsets and utilized an module-network analysis method to identify potential candidate driver genes. The final subtype-specific driver genes were acquired by paired-wise comparison in subtypes. To validate specificity of the driver genes, the gene expression data of these genes were applied to classify the patient samples with 10-fold cross validation and the enrichment analysis were also conducted on the identified driver genes. The experimental results show that the proposed integrative method can identify the potential driver genes and the classifier with these genes acquired better performance than with genes identified by other methods.
Collapse
Affiliation(s)
- Xinguo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China; (X.L.); (X.Q.); (Q.M.)
- Correspondence: (X.L.); (S.P.); Tel.: +86-731-88821907(X.L.)
| | - Xing Li
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China; (X.L.); (X.Q.); (Q.M.)
| | - Ping Liu
- Hunan Want Want Hospital, Changsha 410006, China;
| | - Xin Qian
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China; (X.L.); (X.Q.); (Q.M.)
| | - Qiumai Miao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China; (X.L.); (X.Q.); (Q.M.)
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China; (X.L.); (X.Q.); (Q.M.)
- School of Computer Science, National University of Defense Technology, Changsha 410073, China
- Correspondence: (X.L.); (S.P.); Tel.: +86-731-88821907(X.L.)
| |
Collapse
|
4
|
Shen J, Liu Y, Ren X, Gao K, Li Y, Li S, Yao J, Yang X. Changes in DNA Methylation and Chromatin Structure of Pro-inflammatory Cytokines Stimulated by LPS in Broiler Peripheral Blood Mononuclear Cells. Poult Sci 2016; 95:1636-1645. [DOI: 10.3382/ps/pew086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022] Open
|
5
|
Guyot N, Labas V, Harichaux G, Chessé M, Poirier JC, Nys Y, Réhault-Godbert S. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules. Sci Rep 2016; 6:27974. [PMID: 27294500 PMCID: PMC4904793 DOI: 10.1038/srep27974] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022] Open
Abstract
The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics.
Collapse
Affiliation(s)
- Nicolas Guyot
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l’Oeuf, F-37380 Nouzilly, France
| | - Valérie Labas
- INRA, UMR85 Physiologie de la Reproduction et des Comportements-CNRS UMR 7247-Université François Rabelais-Institut Français du Cheval et de l’Equitation, Plate-forme d’Analyse Intégrative des Biomolécules (PAIB), Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Grégoire Harichaux
- INRA, UMR85 Physiologie de la Reproduction et des Comportements-CNRS UMR 7247-Université François Rabelais-Institut Français du Cheval et de l’Equitation, Plate-forme d’Analyse Intégrative des Biomolécules (PAIB), Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Magali Chessé
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l’Oeuf, F-37380 Nouzilly, France
| | - Jean-Claude Poirier
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l’Oeuf, F-37380 Nouzilly, France
| | - Yves Nys
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l’Oeuf, F-37380 Nouzilly, France
| | - Sophie Réhault-Godbert
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l’Oeuf, F-37380 Nouzilly, France
| |
Collapse
|
6
|
Sulforaphane epigenetically regulates innate immune responses of porcine monocyte-derived dendritic cells induced with lipopolysaccharide. PLoS One 2015; 10:e0121574. [PMID: 25793534 PMCID: PMC4368608 DOI: 10.1371/journal.pone.0121574] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
Histone acetylation, regulated by histone deacetylases (HDACs) is a key epigenetic mechanism controlling gene expressions. Although dendritic cells (DCs) are playing pivotal roles in host immune responses, the effect of epigenetic modulation of DCs immune responses remains unknown. Sulforaphane (SFN) as a HDAC inhibitor has anti-inflammatory properties, which is used to investigate the epigenetic regulation of LPS-induced immune gene and HDAC family gene expressions in porcine monocyte-derived dendritic cells (moDCs). SFN was found to inhibit the lipopolysaccharide LPS induced HDAC6, HDAC10 and DNA methyltransferase (DNMT3a) gene expression, whereas up-regulated the expression of DNMT1 gene. Additionally, SFN was observed to inhibit the global HDAC activity, and suppressed moDCs differentiation from immature to mature DCs through down-regulating the CD40, CD80 and CD86 expression and led further to enhanced phagocytosis of moDCs. The SFN pre-treated of moDCs directly altered the LPS-induced TLR4 and MD2 gene expression and dynamically regulated the TLR4-induced activity of transcription factor NF-κB and TBP. SFN showed a protective role in LPS induced cell apoptosis through suppressing the IRF6 and TGF-ß1 production. SFN impaired the pro-inflammatory cytokine TNF-α and IL-1ß secretion into the cell culture supernatants that were induced in moDCs by LPS stimulation, whereas SFN increased the cellular-resident TNF-α accumulation. This study demonstrates that through the epigenetic mechanism the HDAC inhibitor SFN could modulate the LPS induced innate immune responses of porcine moDCs.
Collapse
|
7
|
Famakin BM, Mou Y, Johnson K, Spatz M, Hallenbeck J. A new role for downstream Toll-like receptor signaling in mediating immediate early gene expression during focal cerebral ischemia. J Cereb Blood Flow Metab 2014; 34:258-67. [PMID: 24301291 PMCID: PMC3915199 DOI: 10.1038/jcbfm.2013.182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/16/2013] [Accepted: 09/20/2013] [Indexed: 12/20/2022]
Abstract
To better understand the role of downstream Toll-like receptor (TLR) signaling during acute cerebral ischemia, we performed cDNA microarrays, on brain RNA, and cytokine arrays, on serum, from wild type (WT), MyD88-/- and TRIF-mutant mice, at baseline and following permanent middle cerebral artery occlusion (pMCAO). The acute stress response pathway was among the top pathways identified by Ingenuity Pathway Analysis of microarray data. We used real-time polymerase chain reaction to confirm the expression of four immediate early genes; EGR1, EGR2, ARC, Nurr77, in this pathway, and insulin degrading enzyme (IDE). Compared to WT, baseline immediate early gene expression was increased up to10-fold in MyD88-/- and TRIF-mutant mice. However, following pMCAO, immediate early gene expression remained unchanged, from this elevated baseline in these mice, but increased up to 12-fold in WT. Furthermore, expression of IDE, which also degrades β-amyloid, decreased significantly only in TRIF-mutant mice. Finally, sE-Selectin, sICAM, sVCAM-1, and MMP-9 levels were significantly decreased only in MyD88-/- compared with WT mice. We thus report a new role for downstream TLR signaling in immediate early gene expression during acute cerebral ischemia. We also show that the TRIF pathway regulates IDE expression; a major enzyme that clears β-amyloid from the brain.
Collapse
Affiliation(s)
- Bolanle M Famakin
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongshan Mou
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Kory Johnson
- National Institute of Neurological Disorders & Stroke, Section on Bioinformatics, Information Technology & Bioinformatics Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Spatz
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - John Hallenbeck
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Doherty R, O'Farrelly C, Meade KG. Epigenetic regulation of the innate immune response to LPS in bovine peripheral blood mononuclear cells (PBMC). Vet Immunol Immunopathol 2013; 154:102-10. [PMID: 23764468 DOI: 10.1016/j.vetimm.2013.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/03/2013] [Accepted: 05/05/2013] [Indexed: 12/30/2022]
Abstract
Epigenetic regulation of gene expression could help explain variation in responses to infection and differences in disease susceptibility in cattle. The aim of this study was to examine epigenetic mechanisms in the regulation of LPS-induced innate immune gene expression in peripheral blood mononuclear cells (PBMCs) from five healthy calves. Firstly, epigenetic enzyme gene expression (histone deacetylase (HDAC) and DNA methyltransferase (DNMT)) was measured after LPS stimulation. Secondly, the effect of the histone deacetylase inhibitor Trichostatin A (TSA) on histone H3 acetylation and on innate immune gene expression was also measured. Results showed differential expression of HDAC6, HDAC7 and DNMT3A genes in response to LPS in cells from all animals, while TSA significantly inhibited pro-inflammatory cytokine (TNF, IL2 and IFNG) expression (P<0.05), presumably by histone acetylation. These results suggest an important role for the HDAC family of enzymes in the regulation of bovine innate immune gene expression.
Collapse
Affiliation(s)
- R Doherty
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co, Meath, Ireland
| | | | | |
Collapse
|