1
|
Gallardo Paffetti M, Cárcamo J, Arias-Darraz L, Alvear C, Ojeda J. Effect of Type of Pregnancy on Transcriptional and Plasma Metabolic Response in Sheep and Its Further Effect on Progeny Lambs. Animals (Basel) 2020; 10:ani10122290. [PMID: 33287438 PMCID: PMC7761827 DOI: 10.3390/ani10122290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The present study was carried out in order to determine the effect of type of pregnancy on the mammary gland development, evaluated through the transcriptional expression of genes that are associated to angiogenesis and cell turnover/lactogenesis and the metabolic response of the animals. For this, six twin and seven single-bearing ewes were fed with naturalized pasture from day −45 pre-partum until day +70 post-partum, taking samples of mammary tissue and plasma at different times from the birth until weaning. The results showed the type of pregnancy could only explain a few differences in the transcriptional expression of in some genes that are involved in angiogenesis and cell turnover/lactogenesis in the mammary gland tissue, which had no impact on the metabolic status of ewes or the metabolic response in plasma, performance, and muscle transcriptional expression of the lambs. Abstract The following study was performed in order to determine the effect of type of pregnancy on the transcriptional expression of genes that are engaged in angiogenesis and cell turnover/lactogenesis in the ewe mammary gland, evaluating its impact on the plasma metabolic response. In addition, an assessment of its further influence on plasma metabolic response, performance, and muscle transcriptional expression of lipogenic enzymes in progeny lambs was made. Thirteen Ile de France sheep (six twin- and seven single-bearing ewes) were allocated to graze ad libitum naturalized pasture from d 45 pre-partum to day 70 post-partum, while keeping their lambs on the same diet until day 60 after weaning. The samples were collected at different times and analyzed by qRT-PCR and plasma metabolic indicators. The data were processed using SPSS package. The results showed that twin-bearing ewes overexpressed VEGFR1 at birth, and BCL2 at birth and day 35 post-partum; however, single-bearing ewes overexpressed CAIV and IGF1 at day 35 post-partum. Similar metabolite concentrations in blood plasma were found between groups of ewes. The plasma metabolic response in lambs was similar between groups and it did not influence their performance, where a similar transcriptional expression of lipogenic enzymes in muscle was observed. Therefore, the type of pregnancy can explain the slight differences in mRNA expression that were found in angiogenesis and cell turnover/lactogenesis in mammary gland, although these differences not only did not affect the plasma metabolic response in ewes, but they also had no influence on plasma metabolic response, performance, and muscle transcriptional expression of their lambs.
Collapse
Affiliation(s)
- María Gallardo Paffetti
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago PO Box 8580745, Chile; (M.G.P.); (C.A.)
| | - Juan Cárcamo
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Facultad de Ciencias, Universidad Austral de Chile, Valdivia PO Box 567, Chile;
- Correspondence: ; Tel.: +56-632-293-413
| | - Luis Arias-Darraz
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Facultad de Ciencias, Universidad Austral de Chile, Valdivia PO Box 567, Chile;
| | - Carlos Alvear
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago PO Box 8580745, Chile; (M.G.P.); (C.A.)
| | - Javier Ojeda
- Instituto de Ciencias Clínicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia PO Box 567, Chile;
| |
Collapse
|
2
|
Parreira JR, Hernández-Castellano LE, Argüello A, Capote J, Castro N, de Sousa Araújo S, de Almeida AM. Understanding seasonal weight loss tolerance in dairy goats: a transcriptomics approach. BMC Genomics 2020; 21:629. [PMID: 32928114 PMCID: PMC7489022 DOI: 10.1186/s12864-020-06968-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Seasonal weight loss (SWL) is a very important limitation to the production of ruminants in the Mediterranean and Tropical regions. In these areas, long dry seasons lead to poor pastures with low nutritional value. During the dry season, ruminants, particularly those raised in extensive production systems, lose around 30% of their body weight. Seasonal weight loss has important consequences on animal productive performance and health. In this study, RNA sequencing was used to characterize feed restriction effects in dairy goat of 2 breeds with different SWL tolerance: Majorera (tolerant) and Palmera (susceptible). Nine Majorera and ten Palmera goats were randomly distributed in a control and a restricted group: Majorera Control (adequately fed; MC; n = 4), Palmera Control (adequately fed; PC; n = 6), Majorera Restricted (feed restricted; ME; n = 5) and Palmera Restricted (feed restricted; PE; n = 4). On day 22 of the trial, mammary gland biopsies were collected for transcriptomics analysis. Results From these samples, 24,260 unique transcripts were identified. From those, 82 transcripts were differentially expressed between MC and ME, 99 between PC and PE, twelve between both control groups and twenty-nine between both restricted groups. Conclusions Feed restriction affected several biochemical pathways in both breeds such as: carbohydrate and lipid transport; intracellular trafficking, RNA processing and signal transduction. This research also highlights the importance or involvement of the genes in tolerance (ENPP1, S-LZ, MT2A and GPNB) and susceptibility (GPD1, CTPS1, ELOVL6 and NR4A1) to SWL with respectively higher expression in the Majorera restriced group and the Palmera restricted group in comparison to the control groups. In addition, results from the study may be extrapolated to other dairy ruminant species.
Collapse
Affiliation(s)
- José Ricardo Parreira
- IBET - Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal.,ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | | | - Anastasio Argüello
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413, Arucas, Spain
| | - Juan Capote
- Unit of Animal Production, Pasture, and Forage in Arid and Subtropical Areas, Canary Islands Institute for Agricultural Research, 38270, La Laguna, Spain
| | - Noemí Castro
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413, Arucas, Spain
| | - Susana de Sousa Araújo
- ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - André Martinho de Almeida
- LEAF - Linking Landscape, Environment, Agriculture And Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 13409-017, Lisbon, Portugal.
| |
Collapse
|
3
|
Martignani E, Ala U, Sheehy PA, Thomson PC, Baratta M. Whole transcriptome analysis of bovine mammary progenitor cells by P-Cadherin enrichment as a marker in the mammary cell hierarchy. Sci Rep 2020; 10:14183. [PMID: 32843665 PMCID: PMC7447765 DOI: 10.1038/s41598-020-71179-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Adult bovine mammary stem cells possess the ability to regenerate in vivo clonal outgrowths that mimic functional alveoli. Commonly available techniques that involve immunophenotype-based cell sorting yield cell fractions that are moderately enriched, far from being highly purified. Primary bovine mammary epithelial cells segregated in four different populations according to the expression of P-Cadherin and CD49f. Sorted cells from each fraction were tested for the presence of lineage-restricted progenitors and stem cells. Only cells from the CD49fhigh/P-Cadherinneg subpopulation were able to give rise to both luminal- and myoepithelial-restricted colonies in vitro and generate organized outgrowths in vivo, which are hallmarks of stem cell activity. After whole transcriptome analysis, we found gene clusters to be differentially enriched that relate to cell-to-cell communication, metabolic processes, proliferation, migration and morphogenesis. When we analyzed only the genes that were differentially expressed in the stem cell enriched fraction, clusters of downregulated genes were related to proliferation, while among the upregulated expression, cluster of genes related to cell adhesion, migration and cytoskeleton organization were observed. Our results show that P-Cadherin separates mammary subpopulations differentially in progenitor cells or mammary stem cells. Further we provide a comprehensive observation of the gene expression differences among these cell populations which reinforces the assumption that bovine mammary stem cells are typically quiescent.
Collapse
Affiliation(s)
- E Martignani
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - U Ala
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - P A Sheehy
- Sydney School of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW, 2570, Australia
| | - P C Thomson
- School of Life and Environmental Sciences, The University of Sydney, 425 Werombi Road, Camden, NSW, 2570, Australia
| | - M Baratta
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, TO, Italy.
| |
Collapse
|
4
|
Gallardo M, Cárcamo JG, Arias-Darraz L, Alvear C. Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland. Animals (Basel) 2019; 9:ani9090589. [PMID: 31438555 PMCID: PMC6770544 DOI: 10.3390/ani9090589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
Simple Summary An experiment was designed to determine the effect of diet and type of pregnancy on the mammary gland development, measured by the transcriptional expression of genes involved in angiogenesis and cell turnover/lactogenesis. To that end, twin and single-bearing ewes were fed naturalized pasture or red clover from day −45 pre-partum until day +60 post-partum, taking samples of mammary tissue at day −10, +30 and +60 post-partum. The results showed that the group of twin-bearing ewes fed red clover was the best combination to increase the expression of genes associated to angiogenesis and cell turnover/lactogenesis in the mammary gland. Abstract These trials were carried out to determine firstly the effect of diet and type of pregnancy on the transcriptional expression of genes involved in angiogenesis and cell turnover/lactogenesis inside the sheep mammary gland from late gestation to late lactation. Eighteen Ile de France sheep, 8 twin- and 10 single-bearing ewes were alloted into two groups according to their diet, either based on ad libitum naturalized pasture or red clover hay plus lupine from day −45 pre-partum until day +60 post-partum. Samples from diets and mammary glands were collected at day −10 pre partum (time 1), day +30 (time 2) and day +60 post-partum (time 3) and analyzed by qRT-PCR. Additionally, samples from longissimus dorsi muscle were taken from lambs twice, at weaning and 45 days later, to determine the effect of the maternal treatment with regard to diet and type of pregnancy, on the mRNA expression of genes involved in lipid metabolism. The data was processed using the lme4 package for R, and SPSS Statistics 23.0 for Windows®. The results showed that the group of twin-bearing ewes fed red clover showed a higher expression of genes involved in angiogenesis before lambing and in cell turnover/lactogenesis during late lactation, explained by a lamb survival mechanism to delay apoptosis as a way to keep a secretory cells population and boosted by the diet quality, assuring a longer milk production potential during late lactation. Regarding lambs, apparently the maternal diet would influence the transcriptional expression of lipogenic enzymes in the longissimus dorsi muscle after weaning, but further studies are necessary to validate these results. In summary, Twin-bearing ewes fed red clover performed best at increasing the expression of genes associated with angiogenesis and cell turnover/lactogenesis in the mammary gland.
Collapse
Affiliation(s)
- María Gallardo
- Facultad de Ciencias, Universidad Austral de Chile, PO Box 567, Valdivia 5090000, Chile.
| | - Juan G Cárcamo
- Facultad de Ciencias, Universidad Austral de Chile, PO Box 567, Valdivia 5090000, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia 5090000, Chile
| | - Luis Arias-Darraz
- Facultad de Ciencias, Universidad Austral de Chile, PO Box 567, Valdivia 5090000, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia 5090000, Chile
| | - Carlos Alvear
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, Santiago 8320000, Chile
| |
Collapse
|
5
|
Deciphering the transcriptome of prepubertal buffalo mammary glands using RNA sequencing. Funct Integr Genomics 2018; 19:349-362. [DOI: 10.1007/s10142-018-0645-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
|
6
|
Liu X, Yang J, Zhang Q, Jiang L. Regulation of DNA methylation on EEF1D and RPL8 expression in cattle. Genetica 2017; 145:387-395. [PMID: 28667419 PMCID: PMC5594039 DOI: 10.1007/s10709-017-9974-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
Abstract
Dynamic changes to the epigenome play a critical role in a variety of biology processes and complex traits. Many important candidate genes have been identified through our previous genome wide association study (GWAS) on milk production traits in dairy cattle. However, the underlying mechanism of candidate genes have not yet been clearly understood. In this study, we analyzed the methylation variation of the candidate genes, EEF1D and RPL8, which were identified to be strongly associated with milk production traits in dairy cattle in our previous studies, and its effect on protein and mRNA expression. We compared DNA methylation profiles and gene expression levels of EEF1D and RPL8 in five different tissues (heart, liver, mammary gland, ovary and muscle) of three cows. Both genes showed the highest expression level in mammary gland. For RPL8, there was no difference in the DNA methylation pattern in the five tissues, suggesting no effect of DNA methylation on gene expression. For EEF1D, the DNA methylation levels of its first CpG island differed in the five tissues and were negatively correlated with the gene expression levels. To further investigate the function of DNA methylation on the expression of EEF1D, we collected blood samples of three cows at early stage of lactation and in dry period and analyzed its expression and the methylation status of the first CpG island in blood. As a result, the mRNA expression of EEF1D in the dry period was higher than that at the early stage of lactation, while the DNA methylation level in the dry period was lower than that at the early stage of lactation. Our result suggests that the DNA methylation of EEF1D plays an important role in the spatial and temporal regulation of its expression and possibly have an effect on the milk production traits.
Collapse
Affiliation(s)
- Xuan Liu
- National Engineering Laboratory for Animal Breeding, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Yang
- National Engineering Laboratory for Animal Breeding, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qin Zhang
- National Engineering Laboratory for Animal Breeding, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Li Jiang
- National Engineering Laboratory for Animal Breeding, Beijing, China. .,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Beijing, China. .,College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Osorio JS, Lohakare J, Bionaz M. Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation. Physiol Genomics 2016; 48:231-56. [DOI: 10.1152/physiolgenomics.00016.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The demand for high-quality milk is increasing worldwide. The efficiency of milk synthesis can be improved by taking advantage of the accumulated knowledge of the transcriptional and posttranscriptional regulation of genes coding for proteins involved in the synthesis of fat, protein, and lactose in the mammary gland. Research in this area is relatively new, but data accumulated in the last 10 years provide a relatively clear picture. Milk fat synthesis appears to be regulated, at least in bovines, by an interactive network between SREBP1, PPARγ, and LXRα, with a potential role for other transcription factors, such as Spot14, ChREBP, and Sp1. Milk protein synthesis is highly regulated by insulin, amino acids, and amino acid transporters via transcriptional and posttranscriptional routes, with the insulin-mTOR pathway playing a central role. The transcriptional regulation of lactose synthesis is still poorly understood, but it is clear that glucose transporters play an important role. They can also cooperatively interact with amino acid transporters and the mTOR pathway. Recent data indicate the possibility of nutrigenomic interventions to increase milk fat synthesis by feeding long-chain fatty acids and milk protein synthesis by feeding amino acids. We propose a transcriptional network model to account for all available findings. This model encompasses a complex network of proteins that control milk synthesis with a cross talk between milk fat, protein, and lactose regulation, with mTOR functioning as a central hub.
Collapse
Affiliation(s)
| | - Jayant Lohakare
- Oregon State University, Corvallis, Oregon; and
- Kangwon National University, Chuncheon, South Korea
| | | |
Collapse
|
8
|
Trabzuni D, Thomson PC. Analysis of gene expression data using a linear mixed model/finite mixture model approach: application to regional differences in the human brain. ACTA ACUST UNITED AC 2014; 30:1555-61. [PMID: 24519379 DOI: 10.1093/bioinformatics/btu088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Gene expression data exhibit common information over the genome. This article shows how data can be analysed from an efficient whole-genome perspective. Further, the methods have been developed so that users with limited expertise in bioinformatics and statistical computing techniques could use and modify this procedure to their own needs. The method outlined first uses a large-scale linear mixed model for the expression data genome-wide, and then uses finite mixture models to separate differentially expressed (DE) from non-DE transcripts. These methods are illustrated through application to an exceptional UK Brain Expression Consortium involving 12 human frozen post-mortem brain regions. RESULTS Fitting linear mixed models has allowed variation in gene expression between different biological states (e.g. brain regions, gender, age) to be investigated. The model can be extended to allow for differing levels of variation between different biological states. Predicted values of the random effects show the effects of each transcript in a particular biological state. Using the UK Brain Expression Consortium data, this approach yielded striking patterns of co-regional gene expression. Fitting the finite mixture model to the effects within each state provides a convenient method to filter transcripts that are DE: these DE transcripts can then be extracted for advanced functional analysis. AVAILABILITY The data for all regions except HYPO and SPCO are available at the Gene Expression Omnibus (GEO) site, accession number GSE46706. R code for the analysis is available in the Supplementary file.
Collapse
Affiliation(s)
- Daniah Trabzuni
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK, Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia and ReproGen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, AustraliaDepartment of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK, Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia and ReproGen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | | | - Peter C Thomson
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK, Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia and ReproGen - Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| |
Collapse
|