1
|
Fan YG, Zhao TT, Xiang QZ, Han XY, Yang SS, Zhang LX, Ren LJ. Multi-Omics Research Accelerates the Clarification of the Formation Mechanism and the Influence of Leaf Color Variation in Tea ( Camellia sinensis) Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:426. [PMID: 38337959 PMCID: PMC10857240 DOI: 10.3390/plants13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Tea is a popular beverage with characteristic functional and flavor qualities, known to be rich in bioactive metabolites such as tea polyphenols and theanine. Recently, tea varieties with variations in leaf color have been widely used in agriculture production due to their potential advantages in terms of tea quality. Numerous studies have used genome, transcriptome, metabolome, proteome, and lipidome methods to uncover the causes of leaf color variations and investigate their impacts on the accumulation of crucial bioactive metabolites in tea plants. Through a comprehensive review of various omics investigations, we note that decreased expression levels of critical genes in the biosynthesis of chlorophyll and carotenoids, activated chlorophyll degradation, and an impaired photosynthetic chain function are related to the chlorina phenotype in tea plants. For purple-leaf tea, increased expression levels of late biosynthetic genes in the flavonoid synthesis pathway and anthocyanin transport genes are the major and common causes of purple coloration. We have also summarized the influence of leaf color variation on amino acid, polyphenol, and lipid contents and put forward possible causes of these metabolic changes. Finally, this review further proposes the research demands in this field in the future.
Collapse
Affiliation(s)
- Yan-Gen Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Ting-Ting Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Qin-Zeng Xiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Xiao-Yang Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Shu-Sen Yang
- Yipinming Tea Planting Farmers Specialized Cooperative, Longnan 746400, China;
| | - Li-Xia Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Li-Jun Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| |
Collapse
|
2
|
Li Y, Zhang C, Ma C, Chen L, Yao M. Transcriptome and Biochemical Analyses of a Chlorophyll-Deficient Bud Mutant of Tea Plant ( Camellia sinensis). Int J Mol Sci 2023; 24:15070. [PMID: 37894753 PMCID: PMC10606798 DOI: 10.3390/ijms242015070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Tea leaf-color mutants have attracted increasing attention due to their accumulation of quality-related biochemical components. However, there is limited understanding of the molecular mechanisms behind leaf-color bud mutation in tea plants. In this study, a chlorina tea shoot (HY) and a green tea shoot (LY) from the same tea plant were investigated using transcriptome and biochemical analyses. The results showed that the chlorophyll a, chlorophyll b, and total chlorophyll contents in the HY were significantly lower than the LY's, which might have been caused by the activation of several genes related to chlorophyll degradation, such as SGR and CLH. The down-regulation of the CHS, DFR, and ANS involved in flavonoid biosynthesis might result in the reduction in catechins, and the up-regulated GDHA and GS2 might bring about the accumulation of glutamate in HY. RT-qPCR assays of nine DEGs confirmed the RNA-seq results. Collectively, these findings provide insights into the molecular mechanism of the chlorophyll deficient-induced metabolic change in tea plants.
Collapse
Affiliation(s)
| | | | | | | | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.L.); (C.Z.); (C.M.); (L.C.)
| |
Collapse
|
3
|
Zhao Y, Yang P, Cheng Y, Liu Y, Yang Y, Liu Z. Insights into the physiological, molecular, and genetic regulators of albinism in Camellia sinensis leaves. Front Genet 2023; 14:1219335. [PMID: 37745858 PMCID: PMC10516542 DOI: 10.3389/fgene.2023.1219335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: Yanling Yinbiancha, a cultivar of Camellia sinensis (L.) O. Kuntze, is an evergreen woody perennial with characteristic albino leaves. A mutant variant with green leaves on branches has been recently identified. The molecular mechanisms underlying this color variation remain unknown. Methods: We aimed to utilize omics tools to decipher the molecular basis for this color variation, with the ultimate goal of enhancing existing germplasm and utilizing it in future breeding programs. Results and discussion: Albinotic leaves exhibited significant chloroplast degeneration and reduced carotenoid accumulation. Transcriptomic and metabolomic analysis of the two variants revealed 1,412 differentially expressed genes and 127 differentially accumulated metabolites (DAMs). Enrichment analysis for DEGs suggested significant enrichment of pathways involved in the biosynthesis of anthocyanins, porphyrin, chlorophyll, and carotenoids. To further narrow down the causal variation for albinotic leaves, we performed a conjoint analysis of metabolome and transcriptome and identified putative candidate genes responsible for albinism in C. sinensis leaves. 12, 7, and 28 DEGs were significantly associated with photosynthesis, porphyrin/chlorophyll metabolism, and flavonoid metabolism, respectively. Chlorophyllase 2, Chlorophyll a-Binding Protein 4A, Chlorophyll a-Binding Protein 24, Stay Green Regulator, Photosystem II Cytochrome b559 subunit beta along with transcription factors AP2, bZIP, MYB, and WRKY were identified as a potential regulator of albinism in Yanling Yinbiancha. Moreover, we identified Anthocyanidin reductase and Arabidopsis Response Regulator 1 as DEGs influencing flavonoid accumulation in albino leaves. Identification of genes related to albinism in C. sinensis may facilitate genetic modification or development of molecular markers, potentially enhancing cultivation efficiency and expanding the germplasm for utilization in breeding programs.
Collapse
Affiliation(s)
- Yang Zhao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | | | | | | | | | - Zhen Liu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|
4
|
Zhang X, Zhao Z, Zhang M, Wang J, Cheng T, Zhang Q, Pan H. FsHemF is involved in the formation of yellow Forsythia leaves by regulating chlorophyll synthesis in response to light intensity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107746. [PMID: 37210861 DOI: 10.1016/j.plaphy.2023.107746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
The leaves of Forsythia koreana 'Suwon Gold' are yellow under natural light condition and can revert to green when the light intensity is reduced. To understand the molecular mechanism of leaf color changes in response to light intensity, we compared the chlorophyll content and precursor content between yellow- and green-leaf Forsythia under shade and light-recovery conditions. We identified the conversion of coproporphyrin III (Coprogen III) to protoporphyrin IX (Proto IX) as the primary rate-limiting step of chlorophyll biosynthesis in yellow-leaf Forsythia. Further analysis of the activity of the enzymes that catalyze this step and the expression pattern of the chlorophyll biosynthesis-related genes under different light intensities revealed that the negatively regulated expression of FsHemF by light intensity was the major cause affecting the leaf color change in response to light intensity in yellow-leaf Forsythia. To further understand the cause of differential expression pattern of FsHemF in yellow- and green-leaf lines, we compared the coding sequence and promoter sequence of FsHemF between yellow- and green-leaf Forsythia. We found that one G-box light-responsive cis-element was absent in the promoter region of green-leaf lines. To investigate the functional role of FsHemF, we performed virus-induced gene silencing (VIGS) of FsHemF in green-leaf Forsythia, which leads to yellowing leaf veins, decreased chlorophyll b content, and inhibition of chlorophyll biosynthesis. The results will assist in elucidating the mechanism of yellow-leaf Forsythia in response to light intensity.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Zhengtian Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Chen Z, Lin S, Chen T, Han M, Yang T, Wang Y, Bao S, Shen Z, Wan X, Zhang Z. Haem Oxygenase 1 is a potential target for creating etiolated/albino tea plants ( Camellia sinensis) with high theanine accumulation. HORTICULTURE RESEARCH 2023; 10:uhac269. [PMID: 37533676 PMCID: PMC10390853 DOI: 10.1093/hr/uhac269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/01/2022] [Indexed: 08/04/2023]
Abstract
Theanine content is highly correlated with sensory quality and health benefits of tea infusion. The tender shoots of etiolated and albino tea plants contain higher theanine than the normal green tea plants and are valuable materials for high quality green tea processing. However, why these etiolated or albino tea plants can highly accumulate theanine is largely unknown. In this study, we observed an Arabidopsis etiolated mutant hy1-100 (mutation in Haem Oxygenase 1, HO1) that accumulated higher levels of glutamine (an analog of theanine). We therefore identified CsHO1 in tea plants and found CsHO1 is conserved in amino acid sequences and subcellular localization with its homologs in other plants. Importantly, CsHO1 expression in the new shoots was much lower in an etiolated tea plants 'Huangkui' and an albino tea plant 'Huangshan Baicha' than that in normal green tea plants. The expression levels of CsHO1 were negatively correlated with theanine contents in these green, etiolated and albino shoots. Moreover, CsHO1 expression levels in various organs and different time points were also negatively correlated with theanine accumulation. The hy1-100 was hypersensitive to high levels of theanine and accumulated more theanine under theanine feeding, and these phenotypes were rescued by the expression of CsHO1 in this mutant. Transient knockdown CsHO1 expression in the new shoots of tea plant using antisense oligonucleotides (asODN) increased theanine accumulation. Collectively, these results demonstrated CsHO1 negatively regulates theanine accumulation in tea plants, and that low expression CsHO1 likely contributes to the theanine accumulation in etiolated/albino tea plants.
Collapse
Affiliation(s)
| | | | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Mengxue Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhougao Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | | |
Collapse
|
6
|
Chen Y, Li Y, Shen C, Xiao L. Topics and trends in fresh tea ( Camellia sinensis) leaf research: A comprehensive bibliometric study. FRONTIERS IN PLANT SCIENCE 2023; 14:1092511. [PMID: 37089662 PMCID: PMC10118041 DOI: 10.3389/fpls.2023.1092511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Tea plant (Camellia sinensis) is a widely cultivated cash crop and tea is a favorite functional food in the world. Fresh tea leaves (FTLs) play a critical role in bridging the two fields closely related to tea cultivation and tea processing, those are, tea plant biology and tea biochemistry. To provide a comprehensive overview of the development stages, authorship collaboration, research topics, and hotspots and their temporal evolution trends in the field of FTLs research, we conducted a bibliometric analysis, based on 971 publications on FTLs-related research published during 2001-2021 from Web of Science Core Collection. CiteSpace, R package Bibliometrix, and VOSviewer were employed in this research. The results revealed that the development history can be roughly divided into three stages, namely initial stage, slow development stage and rapid development stage. Journal of Agricultural & Food Chemistry published most articles in this field, while Frontiers in Plant Science held the highest total citations and h-index. The most influential country, institution, and author in this field was identified as China, the Chinese Academy of Agricultural Sciences, and Xiaochun Wan, respectively. FTLs-related research can be categorized into three main topics: the regulation mechanism of key genes, the metabolism and features of essential compounds, and tea plants' growth and stress responses. The most concerning hotspots are the application of advanced technologies, essential metabolites, leaf color variants, and effective cultivation treatments. There has been a shift from basic biochemical and enzymatic studies to studies of molecular mechanisms that depend on multi-omics technologies. We also discussed the future development in this field. This study provides a comprehensive summary of the research field, making it easier for researchers to be informed about its development history, status, and trends.
Collapse
Affiliation(s)
- YiQin Chen
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - YunFei Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - ChengWen Shen
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
- *Correspondence: Chengwen Shen, ; Lizheng Xiao,
| | - LiZheng Xiao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
- *Correspondence: Chengwen Shen, ; Lizheng Xiao,
| |
Collapse
|
7
|
Mei X, Zhang K, Lin Y, Su H, Lin C, Chen B, Yang H, Zhang L. Metabolic and Transcriptomic Profiling Reveals Etiolated Mechanism in Huangyu Tea ( Camellia sinensis) Leaves. Int J Mol Sci 2022; 23:ijms232315044. [PMID: 36499369 PMCID: PMC9740216 DOI: 10.3390/ijms232315044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Leaf color is one of the key factors involved in determining the processing suitability of tea. It relates to differential accumulation of flavor compounds due to the different metabolic mechanisms. In recent years, photosensitive etiolation or albefaction is an interesting direction in tea research field. However, the molecular mechanism of color formation remains unclear since albino or etiolated mutants have different genetic backgrounds. In this study, wide-target metabolomic and transcriptomic analyses were used to reveal the biological mechanism of leaf etiolation for 'Huangyu', a bud mutant of 'Yinghong 9'. The results indicated that the reduction in the content of chlorophyll and the ratio of chlorophyll to carotenoids might be the biochemical reasons for the etiolation of 'Huangyu' tea leaves, while the content of zeaxanthin was significantly higher. The differentially expressed genes (DEGs) involved in chlorophyll and chloroplast biogenesis were the biomolecular reasons for the formation of green or yellow color in tea leaves. In addition, our results also revealed that the changes of DEGs involved in light-induced proteins and circadian rhythm promoted the adaptation of etiolated tea leaves to light stress. Variant colors of tea leaves indicated different directions in metabolic flux and accumulation of flavor compounds.
Collapse
Affiliation(s)
- Xin Mei
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Kaikai Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yongen Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hongfeng Su
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chuyuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Baoyi Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Haijun Yang
- Center for Basic Experiments and Practical Training, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.Y.); (L.Z.); Tel.: +86-020-8528-0542 (L.Z.)
| | - Lingyun Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.Y.); (L.Z.); Tel.: +86-020-8528-0542 (L.Z.)
| |
Collapse
|
8
|
Zhou Z, Chen M, Wu Q, Zeng W, Chen Z, Sun W. Combined analysis of lipidomics and transcriptomics revealed the key pathways and genes of lipids in light-sensitive albino tea plant ( Camellia sinensis cv. Baijiguan). FRONTIERS IN PLANT SCIENCE 2022; 13:1035119. [PMID: 36330254 PMCID: PMC9623167 DOI: 10.3389/fpls.2022.1035119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Currently, the mechanism by which light-sensitive albino tea plants respond to light to regulate pigment synthesis has been only partially elucidated. However, few studies have focused on the role of lipid metabolism in the whitening of tea leaves. Therefore, in our study, the leaves of the Baijiguan (BJG) tea tree under shade and light restoration conditions were analyzed by a combination of lipidomics and transcriptomics. The leaf color of BJG was regulated by light intensity and responded to light changes in light by altering the contents and proportions of lipids. According to the correlation analysis, we found three key lipid components that were significantly associated with the chlorophyll SPAD value, namely, MGDG (36:6), DGDG (36:6) and DGDG (34:3). Further weighted gene coexpression network analysis (WGCNA) showed that HY5 TF and GLIP genes may be hub genes involved lipid regulation in albino tea leaves. Our results lay a foundation for further exploration of the color changes in albino tea leaves.
Collapse
Affiliation(s)
- Zhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingjie Chen
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Quanjin Wu
- Department of Finance and Management, The Open University of Fujian, Fuzhou, China
| | - Wen Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhidan Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|