1
|
Jiang Y, Xie J, Cheng Q, Cai Z, Xu K, Lu W, Wang F, Wu X, Song Y, Lv T, Zhan P. Comprehensive genomic and spatial immune infiltration analysis of survival outliers in extensive-stage small cell lung cancer receiving first-line chemoimmunotherapy. Int Immunopharmacol 2024; 141:112901. [PMID: 39151386 DOI: 10.1016/j.intimp.2024.112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND A minority of patients with extensive-stage small cell lung cancer (ES-SCLC) exhibit prolonged survival following first-line chemoimmunotherapy, which warrants the use of reliable biomarkers. Here, we investigated the disparities in genomics and immune cell spatial distribution between long- and short-term survival of patients with ES-SCLC. METHODS We retrospectively recruited 11 long-term (>2 years) and 13 short-term (<9 months) ES-SCLC survivors receiving first-line chemoimmunotherapy. The samples were processed using targeted next-generation sequencing (tNGS), programmed death ligand-1 staining, multiplex immunohistochemical staining for immune cells (mIHC), tumor mutation burden (TMB), and chromosomal instability score measurements. The expression of putative genes in SCLC at the bulk and single-cell RNA-sequencing levels, as well as the role of putative genes in pan-cancer immunotherapy cohorts, were analyzed. RESULTS At the genomic level, a greater proportion of the smoking signature and higher TMB (>3.1) were associated with favorable survival. At the single-gene and pathway levels, tNGS revealed that MCL1 and STMN1 amplification and alterations in the apoptosis pathway were more common in short-term survivors, whereas alterations in the DLL3, KMT2B, HGF, EPHA3, ADGRB3, lysine deprivation, and HGF-cMET pathways were observed more frequently in long-term survivors. mIHC analysis of immune cells with different spatial distributions revealed that long-term survivors presented increased numbers of M1-like macrophages in all locations and decreased numbers of CD8+ T cells in the tumor stroma. Bulk transcriptomic analysis demonstrated that high levels of STMN1 and DLL3 represented an immune-suppressive tumor immune microenvironment (TIME), whereas HGF indicated an immune-responsive TIME. The expression levels of our putative genes were comparative in both TP53/RB1 mutant-type and TP53/RB1 wild-type. At the single-cell level, STMN1, MCL1, and DLL3 were highly expressed among all molecular subtypes (SCLC-A, SCLC-N, and SCLC-P), with STMN1 being enriched in cell division and G2M checkpoint pathways. CONCLUSIONS For ES-SCLC patients receiving first-line chemoimmunotherapy, alterations in DLL3, KMT2B, HGF, EPHA3, and ADGRB3 and a greater proportion of M1-like macrophages infiltration in all locations were predictors of favorable survival, while MCL1 and STMN1 amplification, as well as a greater proportion of CD8+ T cells infiltrating the tumor stroma, predicted worse survival.
Collapse
Affiliation(s)
- Yuxin Jiang
- School of Medicine, Southeast University, Nanjing 210000, China
| | - Jingyuan Xie
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Qinpei Cheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Zijing Cai
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing 210002, China
| | - Ke Xu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Fufeng Wang
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Xiaoying Wu
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yong Song
- School of Medicine, Southeast University, Nanjing 210000, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, China.
| | - Tangfeng Lv
- School of Medicine, Southeast University, Nanjing 210000, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, China.
| | - Ping Zhan
- School of Medicine, Southeast University, Nanjing 210000, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, China.
| |
Collapse
|
2
|
Gu H, Gao X, Han W, Wang F, Zhang H, Yao L, Chen W, Liu Q. Overexpression of CDCA8 predicts poor prognosis and drug insensitivity in lung adenocarcinoma. BMC Med Genomics 2024; 17:265. [PMID: 39516785 PMCID: PMC11545569 DOI: 10.1186/s12920-024-02019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) accounts for the highest proportion of lung cancers; however, specific biomarkers are lacking for diagnosis, treatment, and prognostic assessment. Cell division cycle-associated 8 (CDCA8) is a cell cycle regulator with elevated expression in various cancers. However, the association between CDCA8 expression and LUAD prognosis remains unclear. METHODS The association between CDCA8 and LUAD prognosis was evaluated based on the The Cancer Genome Atlas (TCGA) dataset, and CDCA8 related functions were determined using gene enrichment and gene ontology analyses. We also analyzed the association between CDCA8 expression and immune cell infiltration. Immunohistochemistry was used to determine the differential expression of CDCA8 in tumors and controls. Finally, we evaluated the differences in the sensitivity of different levels of CDCA8 to different anticancer drugs in LUAD. RESULTS CDCA8 expression was significantly higher in primary LUAD tumors than in normal tissues (P < 0.001). Moreover, Kaplan-Meier survival analysis demonstrated that high CDCA8 expression predicted poor survival in patients with LUAD (P = 0.006). The receiver operating characteristic (ROC) curves indicated that CDCA8 was an effective guide for the diagnosis of LUAD. Functional annotation indicated that CDCA8 might be involved in functions such as p53 stabilization, nucleotide metabolism, RNA-mediated gene silencing, and the G2/M phase checkpoint. Immune infiltration results suggested that CDCA8 was positively correlated with Th2 cells and Tgd and negatively correlated with Eosinophils and Mast cells (P < 0.01). In addition, elevated expression of CDCA8 may increase the sensitivity of patients to certain anticancer drugs. CONCLUSIONS CDCA8 upregulation is significantly associated with poor survival and immune infiltration in patients with LUAD. Our study suggests that CDCA8 can be used as a biomarker for LUAD prognosis and a reference for personalized medication.
Collapse
Affiliation(s)
- Huiquan Gu
- Department of Pharmacology, Hainan Medical University, No. 3, Longhua Road, Haikou, Hainan, 571199, China
| | - Xinzheng Gao
- Department of Biology, Hainan Medical University, Haikou, Hainan, China
| | - Wenlong Han
- Department of Pharmacology, Hainan Medical University, No. 3, Longhua Road, Haikou, Hainan, 571199, China
| | - Fangyu Wang
- Department of Pharmacology, Hainan Medical University, No. 3, Longhua Road, Haikou, Hainan, 571199, China
| | - Hanqiang Zhang
- Department of First Clinical College, Hainan Medical University, Haikou, Hainan, China
| | - Longyu Yao
- Department of First Clinical College, Hainan Medical University, Haikou, Hainan, China
| | - Weimin Chen
- Department of Pharmacology, Hainan Medical University, No. 3, Longhua Road, Haikou, Hainan, 571199, China.
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, No. 3, Longhua Road, Haikou, Hainan, 571199, China.
| | - Qiang Liu
- Department of Pharmacology, Hainan Medical University, No. 3, Longhua Road, Haikou, Hainan, 571199, China.
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, No. 3, Longhua Road, Haikou, Hainan, 571199, China.
| |
Collapse
|
3
|
Gu M, Liu Y, Zheng W, Jing Z, Li X, Guo W, Zhao Z, Yang X, Liu Z, Zhu X, Gao W. Combined targeting of senescent cells and senescent macrophages: A new idea for integrated treatment of lung cancer. Semin Cancer Biol 2024; 106-107:43-57. [PMID: 39214157 DOI: 10.1016/j.semcancer.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer is one of the most common cancers worldwide and a leading cause of cancer-related deaths. Macrophages play a key role in the immune response and the tumour microenvironment. As an important member of the immune system, macrophages have multiple functions, including phagocytosis and clearance of pathogens, modulation of inflammatory responses, and participation in tissue repair and regeneration. In lung cancer, macrophages are considered to be the major cellular component of the tumor-associated inflammatory response and are closely associated with tumorigenesis, progression and metastasis. However, macrophages gradually undergo a senescence process with age and changes in pathological states. Macrophage senescence is an important change in the functional and metabolic state of macrophages and may have a significant impact on lung cancer development. In lung cancer, senescent macrophages interact with other cells in the tumor microenvironment (TME) by secreting senescence-associated secretory phenotype (SASP) factors, which can either promote the proliferation, invasion and metastasis of tumor cells or exert anti-tumor effects through reprogramming or clearance under specific conditions. Therefore, senescent macrophages are considered important potential targets for lung cancer therapy. In this paper, a systematic review of macrophages and their senescence process, and their role in tumors is presented. A variety of inhibitory strategies against senescent macrophages, including enhancing autophagy, inhibiting SASP, reducing DNA damage, and modulating metabolic pathways, were also explored. These strategies are expected to improve lung cancer treatment outcomes by restoring the anti-tumor function of macrophages.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Wei Gao
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
4
|
Shen S, Hong Y, Huang J, Qu X, Sooranna SR, Lu S, Li T, Niu B. Targeting PD-1/PD-L1 in tumor immunotherapy: Mechanisms and interactions with host growth regulatory pathways. Cytokine Growth Factor Rev 2024; 79:16-28. [PMID: 39179486 DOI: 10.1016/j.cytogfr.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
Tumor immunotherapy has garnered considerable attention, emerging as a new standard of care in cancer treatment. The conventional targets, such as VEGF and EGFR, have been extended to others including BRAF and PD-1/PD-L1, which have shown significant potential in recent cancer treatments. This review aims to succinctly overview the impact and mechanisms of therapies that modulate PD-1/PD-L1 expression by targeting VEGF, EGFR, LAG-3, CTLA-4 and BRAF. We investigated how modulation of PD-1/PD-L1 expression impacts growth factor signaling, shedding light on the interplay between immunomodulatory pathways and growth factor networks within the tumor microenvironment. By elucidating these interactions, we aim to provide insights into novel potential synergistic therapeutic strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Songyu Shen
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Yihan Hong
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Jiajun Huang
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Xiaosheng Qu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi 530023, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, 369 Fulham Road, London SW10 9NH, United Kingdom
| | - Sheng Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, 169 Changle West Rd, Xi'an 710032, China.
| | - Bing Niu
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China.
| |
Collapse
|
5
|
Liu Y, Yang H, Li T, Zhang N. Immunotherapy in liver cancer: overcoming the tolerogenic liver microenvironment. Front Immunol 2024; 15:1460282. [PMID: 39295859 PMCID: PMC11409253 DOI: 10.3389/fimmu.2024.1460282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Liver cancer is a major global health concern, ranking among the top causes of cancer-related deaths worldwide. Despite advances in medical research, the prognosis for liver cancer remains poor, largely due to the inherent limitations of current therapies. Traditional treatments like surgery, radiation, and chemotherapy often fail to provide long-term remission and are associated with significant side effects. Immunotherapy has emerged as a promising avenue for cancer treatment, leveraging the body's immune system to target and destroy cancer cells. However, its application in liver cancer has been limited. One of the primary challenges is the liver's unique immune microenvironment, which can inhibit the effectiveness of immunotherapeutic agents. This immune microenvironment creates a barrier, leading to drug resistance and reducing the overall efficacy of treatment. Recent studies have focused on understanding the immunological landscape of liver cancer to develop strategies that can overcome these obstacles. By identifying the specific factors within the liver that contribute to immune suppression and drug resistance, researchers aim to enhance the effectiveness of immunotherapy. Prospective strategies include combining immunotherapy with other treatments, using targeted therapies to modulate the immune microenvironment, and developing new agents that can bypass or counteract the inhibitory mechanisms in the liver. These advancements hold promise for improving outcomes in liver cancer treatment.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| | - Hongyuan Yang
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Na Zhang
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
6
|
Liu R, Yang G, Guo H, Chen F, Lu S, Zhu H. Roles of naïve CD4 + T cells and their differentiated subtypes in lung adenocarcinoma and underlying potential regulatory pathways. J Transl Med 2024; 22:781. [PMID: 39175022 PMCID: PMC11340134 DOI: 10.1186/s12967-024-05530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Naïve CD4+ T cells and their differentiated counterparts play a significant regulatory role in the tumor immune microenvironment, yet their effects on lung adenocarcinoma (LUAD) are not fully understood. METHODS We utilized Mendelian randomization to assess the causal association between naïve CD4+ T cells and LUAD. Employing a modified single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm with The Cancer Genome Atlas (TCGA) database, we determined the infiltration levels of naïve CD4+ T cells and their differentiation subtypes and investigated their correlation with clinical characteristics. Potential regulatory pathways of T helper cells were identified through Mantel tests and Kyoto Encyclopedia of Genes and Genomes (KEGG) database enrichment analysis. RESULTS Mendelian randomization analysis revealed an inhibitory effect of naïve CD4+ T cells on LUAD (false discovery rate < 0.05), which was corroborated by observational experiments using TCGA database. Specifically, T helper cell type 2 demonstrated a promotive effect on LUAD in terms of overall, disease-free, and progression-free survival (p < 0.05). Moreover, regulatory T cells exhibited a protective effect on LUAD in terms of disease-specific survival (p < 0.01). Concurrently, we explored the overall impact of naïve CD4+ T cell differentiation subtypes on LUAD, revealing upregulation in pathways such as neutrophil degranulation, MAPK family signaling pathways, and platelet activation, signaling, and aggregation. CONCLUSION Naïve CD4+ T cells and their differentiated counterparts play essential regulatory roles in the tumor immune microenvironment, demonstrating bidirectionality in their effects.Thus, elucidating the mechanisms and developing novel cell differentiation-inducing agents will benefit anti-cancer therapy.
Collapse
Affiliation(s)
- Runze Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Guangjian Yang
- Department of Respiratory Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hongbo Guo
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Feihu Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Shuangqing Lu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
7
|
Zhao C, Xiao R, Jin H, Li X. The immune microenvironment of lung adenocarcinoma featured with ground-glass nodules. Thorac Cancer 2024; 15:1459-1470. [PMID: 38923346 PMCID: PMC11219292 DOI: 10.1111/1759-7714.15380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Early-stage lung cancer is now more commonly identified in the form of ground-glass nodules (GGNs). Presently, the treatment of lung cancer with GGNs mainly depends on surgery; however, issues still exist such as overtreatment and delayed treatment due to the nonuniform standard of follow-up. Therefore, the discovery of a noninvasive treatment could expand the treatment repertoire of ground-glass nodular lung cancer and benefit the prognosis of patients. Immunotherapy has recently emerged as a new promising approach in the field of lung cancer treatment. Thus, this study presents a comprehensive review of the immune microenvironment of lung cancer with GGNs and describes the functions and characteristics of various immune cells involved, aiming to provide guidance for the clinical identification of novel immunotherapeutic targets.
Collapse
Affiliation(s)
- Changtai Zhao
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| | - Rongxin Xiao
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| | - Hongming Jin
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| | - Xiao Li
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| |
Collapse
|
8
|
Long Y, Shi H, He Y, Qi X. Analyzing the impact of metabolism on immune cells in tumor microenvironment to promote the development of immunotherapy. Front Immunol 2024; 14:1307228. [PMID: 38264667 PMCID: PMC10804850 DOI: 10.3389/fimmu.2023.1307228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Tumor metabolism and tumor immunity are inextricably linked. Targeting the metabolism of tumors is a point worth studying in tumor immunotherapy. Recently, the influence of the metabolism of tumors and immune cells on the occurrence, proliferation, metastasis, and prognosis of tumors has attracted more attention. Tumor tissue forms a specific tumor microenvironment (TME). In addition to tumor cells, there are also immune cells, stromal cells, and other cells in TME. To adapt to the environment, tumor cells go through the metabolism reprogramming of various substances. The metabolism reprogramming of tumor cells may further affect the formation of the tumor microenvironment and the function of a variety of cells, especially immune cells, eventually promoting tumor development. Therefore, it is necessary to study the metabolism of tumor cells and its effects on immune cells to guide tumor immunotherapy. Inhibiting tumor metabolism may restore immune balance and promote the immune response in tumors. This article will describe glucose metabolism, lipid metabolism, amino acid metabolism, and immune cells in tumors. Besides, the impact of metabolism on the immune cells in TME is also discussed for analyzing and exploring tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Song K, Ma C, Gu B, Wang B, Ma H, Deng X, Chen H. Molecular mechanism underlying epithelial-mesenchymal transformation and cisplatin resistance in esophageal squamous cell carcinoma. Thorac Cancer 2023; 14:3069-3079. [PMID: 37718469 PMCID: PMC10626249 DOI: 10.1111/1759-7714.15094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Esophageal cancer (EC) occupies the seventh spot of the most prevalent malignancy cancer ailments worldwide and the sixth leading cause of cancer-related death. Esophageal squamous cell carcinoma (ESCC) is also the most predominant histological subtype of EC, and cisplatin (DDP) is commonly used as a first-line chemotherapeutic drug for the late advanced stages of the disease. However, the emergence of drug resistance during clinical treatment possesses a significant challenge to the therapeutic success and patient outcomes. Collectively, the epithelial-mesenchymal transformation (EMT) is a process in which transcription factors are induced to regulate the expression of epithelial and stromal markers to promote the differentiation of epithelial cells into stromal cells. Recent studies have demonstrated a close association between EMT and chemotherapy resistance in tumor cells, with concrete evidence of reciprocal reinforcement. Therefore, in this review, we elucidate the molecular mechanism underlying ESCC, shed light on the mechanisms driving DDP resistance, and provide insights into the intricate interplay between EMT and ESCC. We have aimed to provide some new hypotheses and perspectives that may address-inform future therapeutic strategies for ESCC treatment.
Collapse
Affiliation(s)
- Kewei Song
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
- Department of Public HealthJining No.1 People's HospitalJiningChina
| | - Chenhui Ma
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Baohong Gu
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Bofang Wang
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Huanhuan Ma
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Xiaobo Deng
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Hao Chen
- Department of Tumor SurgeryLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Digestive System Tumors of Gansu ProvinceLanzhouChina
| |
Collapse
|