1
|
Qi W, Zhu X, He D, Wang B, Cao S, Dong C, Li Y, Chen Y, Wang B, Shi Y, Jiang G, Liu F, Boots LMM, Li J, Lou X, Yao J, Lu X, Kang J. Mapping Knowledge Landscapes and Emerging Trends in AI for Dementia Biomarkers: Bibliometric and Visualization Analysis. J Med Internet Res 2024; 26:e57830. [PMID: 39116438 PMCID: PMC11342017 DOI: 10.2196/57830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND With the rise of artificial intelligence (AI) in the field of dementia biomarker research, exploring its current developmental trends and research focuses has become increasingly important. This study, using literature data mining, analyzes and assesses the key contributions and development scale of AI in dementia biomarker research. OBJECTIVE The aim of this study was to comprehensively evaluate the current state, hot topics, and future trends of AI in dementia biomarker research globally. METHODS This study thoroughly analyzed the literature in the application of AI to dementia biomarkers across various dimensions, such as publication volume, authors, institutions, journals, and countries, based on the Web of Science Core Collection. In addition, scales, trends, and potential connections between AI and biomarkers were extracted and deeply analyzed through multiple expert panels. RESULTS To date, the field includes 1070 publications across 362 journals, involving 74 countries and 1793 major research institutions, with a total of 6455 researchers. Notably, 69.41% (994/1432) of the researchers ceased their studies before 2019. The most prevalent algorithms used are support vector machines, random forests, and neural networks. Current research frequently focuses on biomarkers such as imaging biomarkers, cerebrospinal fluid biomarkers, genetic biomarkers, and blood biomarkers. Recent advances have highlighted significant discoveries in biomarkers related to imaging, genetics, and blood, with growth in studies on digital and ophthalmic biomarkers. CONCLUSIONS The field is currently in a phase of stable development, receiving widespread attention from numerous countries, institutions, and researchers worldwide. Despite this, stable clusters of collaborative research have yet to be established, and there is a pressing need to enhance interdisciplinary collaboration. Algorithm development has shown prominence, especially the application of support vector machines and neural networks in imaging studies. Looking forward, newly discovered biomarkers are expected to undergo further validation, and new types, such as digital biomarkers, will garner increased research interest and attention.
Collapse
Affiliation(s)
- Wenhao Qi
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Xiaohong Zhu
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Danni He
- School of Nursing, Hangzhou Normal University, Hangzhou, China
- Nursing Department, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Bin Wang
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Shihua Cao
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Chaoqun Dong
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Yunhua Li
- College of Education, Chengdu College of Arts and Sciences, Sichuan, China
| | - Yanfei Chen
- School of Nursing, Hangzhou Normal University, Hangzhou, China
- Nursing Department, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Bingsheng Wang
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Yankai Shi
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Guowei Jiang
- Department of Psychiatry and Neuropsychology and Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Fang Liu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Lizzy M M Boots
- Department of Psychiatry and Neuropsychology and Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Jiaqi Li
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Xiajing Lou
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Jiani Yao
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Xiaodong Lu
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Junling Kang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Zhan K, Buhler KA, Chen IY, Fritzler MJ, Choi MY. Systemic lupus in the era of machine learning medicine. Lupus Sci Med 2024; 11:e001140. [PMID: 38443092 PMCID: PMC11146397 DOI: 10.1136/lupus-2023-001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
Artificial intelligence and machine learning applications are emerging as transformative technologies in medicine. With greater access to a diverse range of big datasets, researchers are turning to these powerful techniques for data analysis. Machine learning can reveal patterns and interactions between variables in large and complex datasets more accurately and efficiently than traditional statistical methods. Machine learning approaches open new possibilities for studying SLE, a multifactorial, highly heterogeneous and complex disease. Here, we discuss how machine learning methods are rapidly being integrated into the field of SLE research. Recent reports have focused on building prediction models and/or identifying novel biomarkers using both supervised and unsupervised techniques for understanding disease pathogenesis, early diagnosis and prognosis of disease. In this review, we will provide an overview of machine learning techniques to discuss current gaps, challenges and opportunities for SLE studies. External validation of most prediction models is still needed before clinical adoption. Utilisation of deep learning models, access to alternative sources of health data and increased awareness of the ethics, governance and regulations surrounding the use of artificial intelligence in medicine will help propel this exciting field forward.
Collapse
Affiliation(s)
- Kevin Zhan
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Katherine A Buhler
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Irene Y Chen
- Computational Precision Health, University of California Berkeley and University of California San Francisco, Berkeley, California, USA
- Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, California, USA
| | - Marvin J Fritzler
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - May Y Choi
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Calgary, Alberta, Canada
| |
Collapse
|