1
|
Pettersson SD, Khorasanizadeh M, Maglinger B, Garcia A, Wang SJ, Taussky P, Ogilvy CS. Trends in the Age of Patients Treated for Unruptured Intracranial Aneurysms from 1990 to 2020. World Neurosurg 2023; 178:233-240.e13. [PMID: 37562685 DOI: 10.1016/j.wneu.2023.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The decision for treatment for unruptured intracranial aneurysms (UIAs) is often difficult. Innovation in endovascular devices have improved the benefit-to-risk profile especially for elderly patients; however, the treatment guidelines from the past decade often recommend conservative management. It is unknown how these changes have affected the overall age of the patients selected for treatment. Herein, we aimed to study potential changes in the average age of the patients that are being treated over time. METHODS A systematic search of the literature was performed to identify all studies describing the age of the UIAs that were treated by any modality. Scatter diagrams with trend lines were used to plot the age of the patients treated over time and assess the presence of a potential significant trend via statistical correlation tests. RESULTS A total of 280 studies including 83,437 UIAs treated between 1987 and 2021 met all eligibility criteria and were entered in the analysis. Mean age of the patients was 55.5 years, and 70.7% were female. There was a significant increasing trend in the age of the treated patients over time (Spearman r: 0.250; P < 0.001), with a 1-year increase in the average age of the treated patients every 5 years since 1987. CONCLUSIONS The present study indicates that based on the treated UIA patient data published in the literature, older UIAs are being treated over time. This trend is likely driven by safer treatments while suggesting that re-evaluation of certain UIA treatment decision scores may be of great interest.
Collapse
Affiliation(s)
- Samuel D Pettersson
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - MirHojjat Khorasanizadeh
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Benton Maglinger
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alfonso Garcia
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - S Jennifer Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philipp Taussky
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher S Ogilvy
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Liang S, Fan X, Chen F, Liu Y, Qiu B, Zhang K, Qi S, Zhang G, Liu J, Zhang J, Wang J, Wang X, Song Z, Luan G, Yang X, Jiang R, Zhang H, Wang L, You Y, Shu K, Lu X, Gao G, Zhang B, Zhou J, Jin H, Han K, Li Y, Wei J, Yang K, You G, Ji H, Jiang Y, Wang Y, Lin Z, Li Y, Liu X, Hu J, Zhu J, Li W, Wang Y, Kang D, Feng H, Liu T, Chen X, Pan Y, Liu Z, Li G, Li Y, Ge M, Fu X, Wang Y, Zhou D, Li S, Jiang T, Hou L, Hong Z. Chinese guideline on the application of anti-seizure medications in the perioperative period of supratentorial craniocerebral surgery. Ther Adv Neurol Disord 2022; 15:17562864221114357. [PMID: 35992894 PMCID: PMC9386849 DOI: 10.1177/17562864221114357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Seizures are a common symptom of craniocerebral diseases, and epilepsy is one of the comorbidities of craniocerebral diseases. However, how to rationally use anti-seizure medications (ASMs) in the perioperative period of craniocerebral surgery to control or avoid seizures and reduce their associated harm is a problem. The China Association Against Epilepsy (CAAE) united with the Trauma Group of the Chinese Neurosurgery Society, Glioma Professional Committee of the Chinese Anti-Cancer Association, Neuro-Oncology Branch of the Chinese Neuroscience Society, and Neurotraumatic Group of Chinese Trauma Society, and selected experts for consultancy regarding outcomes from evidence-based medicine in domestic and foreign literature. These experts referred to the existing research evidence, drug characteristics, Chinese FDA-approved indications, and expert experience, and finished the current guideline on the application of ASMs during the perioperative period of craniocerebral surgery, aiming to guide relevant clinical practice. This guideline consists of six sections: application scope of guideline, concepts of craniocerebral surgery-related seizures and epilepsy, postoperative application of ASMs in patients without seizures before surgery, application of ASMs in patients with seizures associated with lesions before surgery, emergency treatment of postoperative seizures, and 16 recommendations.
Collapse
Affiliation(s)
- Shuli Liang
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Road, Xicheng District, Beijing 100045, China
| | - Xing Fan
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Xijing Hospital of Airforce Medical University, Xi'an, China
| | - Yonghong Liu
- Xijing Hospital of Airforce Medical University, Xi'an, China
| | - Binghui Qiu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Songtao Qi
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guojun Zhang
- Xijing Hospital of Airforce Medical University, Xi'an, China
| | - Jinfang Liu
- Xiangya Hospital, Central South University, Changsha, China
| | - Jianguo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiu Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ziyang Song
- Xijing Hospital of Airforce Medical University, Xi'an, China
| | - Guoming Luan
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xuejun Yang
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Rongcai Jiang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lei Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongping You
- Jiangsu Provincial People's Hospital, Nanjing, China
| | - Kai Shu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Lu
- The Affiliated Hospital, Jiangnan University, Wuxi, China
| | - Guoyi Gao
- Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Zhang
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jian Zhou
- Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Hai Jin
- General Hospital of Northern Theater Command, Shenyang, China
| | - Kaiwei Han
- Shanghai Changzheng Hospital, Shanghai Neurosurgical Institute, Shanghai, China
| | - Yiming Li
- Shanghai Changzheng Hospital, Shanghai Neurosurgical Institute, Shanghai, China
| | - Junji Wei
- Peking Union Medical College Hospital, Beijing, China
| | - Kun Yang
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Gan You
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongming Ji
- Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yuwu Jiang
- Peking University First Hospital, Beijing, China
| | - Yi Wang
- Children's Hospital of Fudan University, Shanghai, China
| | - Zhiguo Lin
- First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yan Li
- Children's Hospital of Soochow University, Suzhou, China
| | - Xuewu Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Institute of Epilepsy, Shandong University, Jinan, China
| | - Jie Hu
- Huashan Hospital, Fudan University, Shanghai, China
| | - Junming Zhu
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Wenling Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongxin Wang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dezhi Kang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hua Feng
- The Southwest Hospital, Army Medical University, Chongqing, China
| | - Tinghong Liu
- Xijing Hospital of Airforce Medical University, Xi'an, China
| | - Xin Chen
- Tianjin Medical University General Hospital, Tianjin, China
| | - Yawen Pan
- Lanzhou University Second Hospital, Lanzhou, China
| | - Zhixiong Liu
- Xiangya Hospital, Central South University, Changsha, China
| | - Gang Li
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunqian Li
- The First Hospital of Jilin University, Changchun, China
| | - Ming Ge
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Key Laboratory of Major Disease in Children, Ministry of Education, Beijing, China
| | - Xianming Fu
- The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, China
| | - Yuping Wang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dong Zhou
- West China Hospital, Sichuan University, Chengdu, China
| | - Shichuo Li
- China Association Against Epilepsy, No. 135 Xizhimen Wai Avenue, Beijing 100044, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing 10070, China
| | - Lijun Hou
- Shanghai Changzheng Hospital, Shanghai Neurosurgical Institute, No. 415, Fengyan Road, Huangpu District, Shanghai 200003, China
| | - Zhen Hong
- Huashan Hospital, Fudan University, No. 12, Urumqi Middle Road, Jing'an District, Shanghai 200044, China
| |
Collapse
|
4
|
Rozycki A, Lewin JJ, Tamargo R, Zink B, Mirski M, Gibbs H. Impact of intraoperative cefazolin on postoperative seizures after elective repair of unruptured cerebral aneurysm. Am J Health Syst Pharm 2017; 74:213-217. [PMID: 28179247 DOI: 10.2146/ajhp160069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The impact of intraoperative cefazolin on postoperative seizures after elective repair of an unruptured cerebral aneurysm was evaluated. METHODS Chart review of a prospectively accrued database was performed for patients admitted from January 1, 2003, through December 31, 2013. Patients were included in the study if they underwent elective repair of an unruptured aneurysm with surgical clipping or wrapping. The primary objective was to determine if the use of cefazolin increased patients' odds of having a seizure within six hours of surgical intervention. Univariate comparisons were conducted on all variables for patients who received cefazolin and patients who were treated with other antibiotics. Multivariable logistic regression was performed to assess the impact of cefazolin administered intraoperatively on postoperative seizures, while accounting for other covariates. RESULTS Of the 520 patients included, 53 (10.2%) patients developed seizures within six hours after surgery. A total of 439 (84.4%) patients received cefazolin intraoperatively. There were no differences in baseline characteristics between the patients who received cefazolin compared with those who did not. The frequency of seizures did not significantly differ between patients treated with cefazolin versus other antibiotics (11.2% versus 4.9%, respectively; p = 0.08). Multivariable regression revealed that the use of cefazolin did not increase the odds of having a seizure postoperatively compared with patients treated with other antibiotics (odds ratio, 2.4; 95% confidence interval, 0.82-7.15). CONCLUSION No relationship was found between the intraoperative use of cefazolin and the development of seizures during the six hours after the repair of unruptured cerebral aneurysms.
Collapse
Affiliation(s)
- Alan Rozycki
- Wexner Medical Center, Ohio State University, Columbus, OH
| | | | | | | | | | - Haley Gibbs
- Department of Pharmacy, Wake Forest Baptist Medical Center, Winston-Salem, NC
| |
Collapse
|