1
|
Meng EX, Verne GN, Zhou Q. Macrophages and Gut Barrier Function: Guardians of Gastrointestinal Health in Post-Inflammatory and Post-Infection Responses. Int J Mol Sci 2024; 25:9422. [PMID: 39273369 PMCID: PMC11395020 DOI: 10.3390/ijms25179422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The gut barrier is essential for protection against pathogens and maintaining homeostasis. Macrophages are key players in the immune system, are indispensable for intestinal health, and contribute to immune defense and repair mechanisms. Understanding the multifaceted roles of macrophages can provide critical insights into maintaining and restoring gastrointestinal (GI) health. This review explores the essential role of macrophages in maintaining the gut barrier function and their contribution to post-inflammatory and post-infectious responses in the gut. Macrophages significantly contribute to gut barrier integrity through epithelial repair, immune modulation, and interactions with gut microbiota. They demonstrate active plasticity by switching phenotypes to resolve inflammation, facilitate tissue repair, and regulate microbial populations following an infection or inflammation. In addition, tissue-resident (M2) and infiltration (M1) macrophages convert to each other in gut problems such as IBS and IBD via major signaling pathways mediated by NF-κB, JAK/STAT, PI3K/AKT, MAPK, Toll-like receptors, and specific microRNAs such as miR-155, miR-29, miR-146a, and miR-199, which may be good targets for new therapeutic approaches. Future research should focus on elucidating the detailed molecular mechanisms and developing personalized therapeutic approaches to fully harness the potential of macrophages to maintain and restore intestinal permeability and gut health.
Collapse
Affiliation(s)
| | - George Nicholas Verne
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| | - Qiqi Zhou
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| |
Collapse
|
2
|
Chandra Jha V, Jain R, Saran Sinha V, Kumar N, Verma G, Maurya VK. Navigating Uncharted Waters: Comparative Analysis of Clinical Progression and Outcomes in Vestibular Schwannoma Patients with Papilledema and without Hydrocephalus, Versus Those without Papilledema and Hydrocephalus: A Comprehensive Institutional Insight. World Neurosurg 2024; 184:e743-e753. [PMID: 38342171 DOI: 10.1016/j.wneu.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Papilledema's association with hydrocephalus (HCP)-linked larger vestibular schwannoma (VS) is established but cases lacking concurrent HCP require further investigation. METHODS This retrospective comparative observational study, conducted from July 2018 to July 2023, examined 120 VS patients undergoing surgery. Patients were categorized into Group 1 (papilledema without HCP) and Group 2 (no papilledema or HCP), with comprehensive data analyzed. RESULTS In this study, Group 1 (14 patients with papilledema) and Group 2 (106 patients without papilledema or HCP) were compared. Group 1 was younger (mean age 27.21 ± 11.73 years) than Group 2 (mean age 54.66 ± 11.44 years). Both groups had similar symptom durations and tumor detection times. Group 1 had increased vascularity (P = 0.001), elevated cisterna magna protein levels (P = 0.001), and a higher incidence of neurofibromatosis 2 (P = 0.003). They also experienced longer surgeries (P = 0.001) and more blood loss (P = 0.001), leading to extended postoperative complications. Group 2 showed improved postsurgery visual outcomes (P = 0.001), better Glasgow Outcome Scores (P = 0.001), enhanced facial nerve preservation (P = 0.002), and improved hearing on follow-up (P = 0.003). Logistic regression analysis highlighted prolonged surgery duration (P = 0.057) and papilledema (P = 0.0001) as significant factors influencing visual improvement. CONCLUSIONS Patients with VS require preoperative fundoscopy evaluation due to potential visual loss and papilledema, even without HCP. Early treatment initiation enhances visual and hearing outcomes. Meticulous surgery is vital given the lesion's hypervascular nature and adherence to surrounding structures. Preoperative embolization may aid in preserving neurovascular structures. In developing countries with higher blindness rates, judicious noncontrast computed tomography brain evaluation is crucial for timely detection and treatment initiation of lesions like VS.
Collapse
Affiliation(s)
- Vikas Chandra Jha
- Department of Neurosurgery, All India Institute of Medical Sciences, Patna, India.
| | - Rahul Jain
- Department of Neurosurgery, All India Institute of Medical Sciences, Patna, India
| | - Vivek Saran Sinha
- Department of Neurosurgery, All India Institute of Medical Sciences, Patna, India
| | - Nitish Kumar
- Department of Neurosurgery, All India Institute of medical sciences, Patna, India
| | - Gaurav Verma
- Department of Neurosurgery, All India Institute of medical sciences, Patna, India
| | | |
Collapse
|
3
|
Kujawa M, O’Meara M, Li H, Xu L, Meda Venkata SP, Nguyen H, Minjares M, Zhang K, Wang JM. MicroRNA-466 and microRNA-200 increase endothelial permeability in hyperglycemia by targeting Claudin-5. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:259-271. [PMID: 35892090 PMCID: PMC9307898 DOI: 10.1016/j.omtn.2022.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 07/04/2022] [Indexed: 01/05/2023]
Abstract
Endothelial cell (EC) permeability is essential to vascular homeostasis in diabetes. MicroRNAs are critical gene regulators whose roles in the EC permeability have yet to be characterized. This study aims to examine the change in cell permeability induced by miR-200 and miR-466 in ECs. Human aortic ECs and dermal microvascular ECs from healthy subjects and type 2 diabetic patients were used. Our in vitro experiments unveiled higher expressions of miR-200 family members and miR-466 in diabetic ECs and in healthy ECs when exposed to high glucose. Overexpression of both miR-200 and miR-466 significantly increased EC permeability through transcriptional suppression of Claudin-5, the cell tight junction protein, by directly binding to its 3' untranslated region. In a mouse model of chronic hyperglycemia mimicking type 2 diabetes in humans (db/db mice), the delayed closure rate of a full-thickness excisional wound was partly rescued by topical application of the miR-200 inhibitor. The topical application of both miR-200 and miR-466 inhibitors exhibited improved efficacy in accelerating wound closure compared with the topical application of miR-200 inhibitor alone. Our study demonstrated the potentially effective approach of miR-200/miR-466 cocktail inhibition to restore vascular integrity and tissue repair in hyperglycemia.
Collapse
Affiliation(s)
- Marisa Kujawa
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Megan O’Meara
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hainan Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sai Pranathi Meda Venkata
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Huong Nguyen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Kezhong Zhang
- Centers for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Centers for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
4
|
Wang Z, Wang X, Wan JB, Xu F, Zhao N, Chen M. Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103780. [PMID: 34643028 DOI: 10.1002/smll.202103780] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Optical imaging in the second near infrared region (NIR-II, 1000-1700 nm) provides higher resolution and deeper penetration depth for accurate and real-time vascular anatomy, blood dynamics, and function information, effectively contributing to the early diagnosis and curative effect assessment of vascular anomalies. Currently, NIR-II optical imaging demonstrates encouraging results including long-term monitoring of vascular injury and regeneration, real-time feedback of blood perfusion, tracking of lymphatic metastases, and imaging-guided surgery. This review summarizes the latest progresses of NIR-II optical imaging for angiography including fluorescence imaging, photoacoustic (PA) imaging, and optical coherence tomography (OCT). The development of current NIR-II fluorescence, PA, and OCT probes (i.e., single-walled carbon nanotubes, quantum dots, rare earth doped nanoparticles, noble metal-based nanostructures, organic dye-based probes, and semiconductor polymer nanoparticles), highlighting probe optimization regarding high brightness, longwave emission, and biocompatibility through chemical modification or nanotechnology, is first introduced. The application of NIR-II probes in angiography based on the classification of peripheral vascular, cerebrovascular, tumor vessel, and cardiovascular, is then reviewed. Major challenges and opportunities in the NIR-II optical imaging for vascular imaging are finally discussed.
Collapse
Affiliation(s)
- Zi'an Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Xuan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Fujian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100000, China
| | - Nana Zhao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100000, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
5
|
Sokolov DI, Kozyreva AR, Markova KL, Mikhailova VA, Korenevskii AV, Miliutina YP, Balabas OA, Chepanov SV, Selkov SA. Microvesicles produced by monocytes affect the phenotype and functions of endothelial cells. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|