1
|
Ohno M, Takahashi M, Yanagisawa S, Osawa S, Tsuchiya T, Fujita S, Igaki H, Narita Y. Development of a scoring system to predict local recurrence in brain metastases following complete resection and observation. J Neurooncol 2024; 170:297-305. [PMID: 39098980 DOI: 10.1007/s11060-024-04790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Postoperative stereotactic radiosurgery to the resection cavity in patients with brain metastases is guideline-recommended therapy. However, Japanese Clinical Oncology Group 0504 study showed that postoperative observation could be a therapeutic option in patients with completed resected brain metastases. We hereby investigated the incidence and risk factors for local recurrence after complete resection without immediate radiotherapy and developed a scoring system for its prediction. METHODS We included 53 patients with 54 brain metastases, who underwent complete resection between January 2016 and December 2021. We identified risk factors for local recurrence and developed a scoring system to predict it using the extracted risk factors, by assigning one point to each risk factor and calculating the total scores for each patient. We evaluated the correlation between the prognostic score and time to local recurrence. RESULTS Local recurrence occurred in 37 of 54 tumors (68.5%), with a median follow-up duration of 21.0 months. The median time to local recurrence was 5.1 months. Univariate and multivariate analyses revealed that non-lung adenocarcinoma, infratentorial tumors, and no postoperative systemic therapy were identified as risk factors for local recurrence (non-lung adenocarcinoma, p = 0.035; infratentorial tumors, p = 0.044; and no postoperative systemic therapy, p = 0.0069). A score ≥ 2 showed a median time to local recurrence of 2.1 months, starkly contrasting with 30.8 months for a score ≤ 1 (p = 0.0002). CONCLUSIONS Non-lung adenocarcinoma, infratentorial tumors, and no postoperative systemic therapy were risk factors for local recurrence. Our scoring system can predict local recurrence, thus potentially aiding treatment decisions.
Collapse
Affiliation(s)
- Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Sho Osawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takahiro Tsuchiya
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shohei Fujita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
2
|
Yamamoto Y, Tomoto K, Teshigawara A, Ishii T, Hasegawa Y, Akasaki Y, Murayama Y, Tanaka T. Significance and Priority of Surgical Resection as Therapeutic Strategy Based on Clinical Characteristics of Brain Metastases from Renal Cell Carcinoma. World Neurosurg 2024:S1878-8750(24)01535-3. [PMID: 39243967 DOI: 10.1016/j.wneu.2024.08.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE To clarify a rational surgical priority, clinical characteristics were compared between brain metastases (BM) from renal cell carcinoma (RCC) and other cancers. METHODS We reviewed 425 consecutive patients with BM who underwent treatments including surgery between January 2014 and December 2022. Primary cancers included lung (n = 220), breast (n = 46), digestive (n = 65), RCC (n = 25), and others (n = 69). Tumor volume (T), edema volume (E), and edema volume/tumor volume ratio (E/T ratio) were compared between RCC and other primary cancers. Cutoff T values for identifying both symptomatic tumors and tumors suitable for surgery were determined by receiver operating characteristic curves. Factors including E/T ratio, age, Karnofsky Performance Scale score, and tumor characteristics were statistically analyzed. RESULTS Cutoff values of T and E to determine surgical suitability were 4.973 cm3 (sensitivity, 0.848; specificity, 0.74) and 23.088 cm3 (sensitivity, 0.894; specificity, 0.623), respectively. E/T ratio was significantly higher for RCC than for other cancers (P < 0.01). These results remained consistent after propensity score matching. RCC tended to show a significantly lower frequency of posterior fossa tumor (16%, P < 0.01) and higher rates of single lesions (72%, P = 0.03) and intratumoral hemorrhage (24%, P = 0.02). Subgroup analysis limited to surgical cases showed that E was consistent across tumors, T tended to be smaller, and E/T ratio was significantly higher in RCC. CONCLUSIONS Generally, symptomatic BM were indicated for surgery. BM from RCC were characteristically single, low-volume lesions with expanding edema and intratumoral hemorrhage, causing symptoms. These results suggest that surgery should be a high priority for BM from RCC.
Collapse
Affiliation(s)
- Yohei Yamamoto
- Department of Neurosurgery, The Jikei University School of Medicine Daisan Hospital Tokyo, Tokyo, Japan; Department of Neurosurgery, The Jikei University School of Medicine Kashiwa Hospital, Chiba, Japan
| | - Kyoichi Tomoto
- Department of Neurosurgery, The Jikei University School of Medicine Kashiwa Hospital, Chiba, Japan; Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Akihiko Teshigawara
- Department of Neurosurgery, The Jikei University School of Medicine Kashiwa Hospital, Chiba, Japan
| | - Takuya Ishii
- Department of Neurosurgery, The Jikei University School of Medicine Daisan Hospital Tokyo, Tokyo, Japan
| | - Yuzuru Hasegawa
- Department of Neurosurgery, The Jikei University School of Medicine Kashiwa Hospital, Chiba, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, The Jikei University School of Medicine Kashiwa Hospital, Chiba, Japan; Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Dharnipragada R, Dusenbery K, Ferreira C, Sharma M, Chen CC. Preoperative Versus Postoperative Radiosurgery of Brain Metastases: A Meta-Analysis. World Neurosurg 2024; 182:35-41. [PMID: 37918565 DOI: 10.1016/j.wneu.2023.10.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE While postoperative resection cavity radiosurgery (post-SRS) is an accepted treatment paradigm for brain metastasis (BM) patients who undergo surgical resection, there is emerging interest in preoperative radiosurgery (pre-SRS) followed by surgical resection as an alternative treatment paradigm. Here, we performed a meta-analysis of the available literature on this matter. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a search of all studies evaluating pre-SRS and post-SRS was completed. Local recurrence (LR), overall survival (OS), radiation necrosis (RN), and leptomeningeal disease (LMD) were evaluated from the available data. Moderator analysis and pooled effect sizes were performed using a proportional meta-analysis with R using the metafor package. Statistics are presented as mean [95% confidence interval]. RESULTS We identified 6 pre-SRS and 33 post-SRS studies with comparable tumor volume (4.5-17.6 cm3). There were significant differences in the pooled estimates of LR and LMD, favoring pre-SRS over post-SRS. Pooled aggregate for LR was 11.0% [4.9-13.7] and 17.5% [15.1-19.9] for pre- and post-SRS studies (P = 0.014). Similarly, pooled estimates of LMD favored pre-SRS, 4.4% [2.6-6.2], relative to post-SRS, 12.3% [8.9-15.7] (P = 0.019). In contrast, no significant differences were found in terms of RN and OS. Pooled estimates for RN were 6.4% [3.1-9.6] and 8.9% [6.3-11.6] for pre- and post-SRS studies (P = 0.393), respectively. Pooled estimates for OS were 60.2% [55.8-64.6] and 60.5% [56.9-64.0] for pre- and post-SRS studies (P = 0.974). CONCLUSIONS This meta-analysis supports further exploration of pre-SRS as a strategy for the treatment of BM.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA.
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Mayur Sharma
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Crompton D, Koffler D, Fekrmandi F, Lehrer EJ, Sheehan JP, Trifiletti DM. Preoperative stereotactic radiosurgery as neoadjuvant therapy for resectable brain tumors. J Neurooncol 2023; 165:21-28. [PMID: 37889441 DOI: 10.1007/s11060-023-04466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE Stereotactic radiosurgery (SRS) is a method of delivering conformal radiation, which allows minimal radiation damage to surrounding healthy tissues. Adjuvant radiation therapy has been shown to improve local control in a variety of intracranial neoplasms, such as brain metastases, gliomas, and benign tumors (i.e., meningioma, vestibular schwannoma, etc.). For brain metastases, adjuvant SRS specifically has demonstrated positive oncologic outcomes as well as preserving cognitive function when compared to conventional whole brain radiation therapy. However, as compared with neoadjuvant SRS, larger post-operative volumes and greater target volume uncertainty may come with an increased risk of local failure and treatment-related complications, such as radiation necrosis. In addition to its role in brain metastases, neoadjuvant SRS for high grade gliomas may enable dose escalation and increase immunogenic effects and serve a purpose in benign tumors for which one cannot achieve a gross total resection (GTR). Finally, although neoadjuvant SRS has historically been delivered with photon therapy, there are high LET radiation modalities such as carbon-ion therapy which may allow radiation damage to tissue and should be further studied if done in the neoadjuvant setting. In this review we discuss the evolving role of neoadjuvant radiosurgery in the treatment for brain metastases, gliomas, and benign etiologies. We also offer perspective on the evolving role of high LET radiation such as carbon-ion therapy. METHODS PubMed was systemically reviewed using the search terms "neoadjuvant radiosurgery", "brain metastasis", and "glioma". ' Clinicaltrials.gov ' was also reviewed to include ongoing phase III trials. RESULTS This comprehensive review describes the evolving role for neoadjuvant SRS in the treatment for brain metastases, gliomas, and benign etiologies. We also discuss the potential role for high LET radiation in this setting such as carbon-ion radiotherapy. CONCLUSION Early clinical data is very promising for neoadjuvant SRS in the setting of brain metastases. There are three ongoing phase III trials that will be more definitive in evaluating the potential benefits. While there is less data available for neoadjuvant SRS for gliomas, there remains a potential role, particularly to enable dose escalation and increase immunogenic effects.
Collapse
Affiliation(s)
- David Crompton
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Daniel Koffler
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Fatemeh Fekrmandi
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, USA
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
5
|
Levis M, Gastino A, De Giorgi G, Mantovani C, Bironzo P, Mangherini L, Ricci AA, Ricardi U, Cassoni P, Bertero L. Modern Stereotactic Radiotherapy for Brain Metastases from Lung Cancer: Current Trends and Future Perspectives Based on Integrated Translational Approaches. Cancers (Basel) 2023; 15:4622. [PMID: 37760591 PMCID: PMC10526239 DOI: 10.3390/cancers15184622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain metastases (BMs) represent the most frequent metastatic event in the course of lung cancer patients, occurring in approximately 50% of patients with non-small-cell lung cancer (NSCLC) and in up to 70% in patients with small-cell lung cancer (SCLC). Thus far, many advances have been made in the diagnostic and therapeutic procedures, allowing improvements in the prognosis of these patients. The modern approach relies on the integration of several factors, such as accurate histological and molecular profiling, comprehensive assessment of clinical parameters and precise definition of the extent of intracranial and extracranial disease involvement. The combination of these factors is pivotal to guide the multidisciplinary discussion and to offer the most appropriate treatment to these patients based on a personalized approach. Focal radiotherapy (RT), in all its modalities (radiosurgery (SRS), fractionated stereotactic radiotherapy (SRT), adjuvant stereotactic radiotherapy (aSRT)), is the cornerstone of BM management, either alone or in combination with surgery and systemic therapies. We review the modern therapeutic strategies available to treat lung cancer patients with brain involvement. This includes an accurate review of the different technical solutions which can be exploited to provide a "state-of-art" focal RT and also a detailed description of the systemic agents available as effective alternatives to SRS/SRT when a targetable molecular driver is present. In addition to the validated treatment options, we also discuss the future perspective for focal RT, based on emerging clinical reports (e.g., SRS for patients with many BMs from NSCLC or SRS for BMs from SCLC), together with a presentation of innovative and promising findings in translational research and the combination of novel targeted agents with SRS/SRT.
Collapse
Affiliation(s)
- Mario Levis
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Alessio Gastino
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Greta De Giorgi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Cristina Mantovani
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paolo Bironzo
- Oncology Unit, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Umberto Ricardi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| |
Collapse
|
6
|
Gagliardi F, De Domenico P, Snider S, Nizzola MG, Mortini P. Efficacy of neoadjuvant stereotactic radiotherapy in brain metastases from solid cancer: a systematic review of literature and meta-analysis. Neurosurg Rev 2023; 46:130. [PMID: 37256368 DOI: 10.1007/s10143-023-02031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023]
Abstract
Neoadjuvant stereotactic radiotherapy (NaSRT) is a novel strategy for brain metastasis (BM) treatment, promising to achieve good local control, improved survival, and low toxicity. This is a systematic review of available literature and meta-analysis of 8 articles eligible for inclusion after searching MEDLINE via PubMed, Web-of-science, Cochrane Wiley, and Embase databases up to March 2023. A total of 484 patients undergoing NaSRT to treat 507 lesions were included. The median age was 60.9 (IQR 57-63) years, with a median tumor volume of 12.1 (IQR 9-14) cm3. The most frequent histology was non-small-cell lung cancer (41.3%), followed by breast (18.8%), and melanoma (14.3%). Lesions had a preferred supratentorial location (77.4%). Most of the studies used a single fraction schedule (91% of patients, n = 440). Treatment parameters were homogeneous and showed a median dose of 18 (IQR 15.5-20.5) Gy at a median of 80% isodose. Surgery was performed after a median of 1.5 (IQR 1-2.4) days and achieved gross-total extent in 94% of cases. Median follow-up was 12.9 (IQR 10-15.7) months. NaSRT showed an overall mortality rate of 58% (95% CI 43-73) at the last follow-up. Actuarial outcomes rates were 60% (95% CI 55-64) for 1-year overall survival (1y-OS), 38% (95% CI 33-43) for 2y-OS, 29% (95% CI 24-34) for 3y-OS; overall 15% (95% CI 11-19) for local failure, 46% (95% CI 37-55) for distant brain failure, 6% (95% CI 3-8) for radionecrosis, and 5% (95% CI 3-8) for leptomeningeal dissemination. The median local progression-free survival time was 10.4 (IQR 9.5-11.4) months, while the median survival without distant failure was 7.4 (IQR 6.9-8) months. The median OS time for the entire cohort was 17 (IQR 14.9-17.9) months. Existing data suggest that NaSRT is effective and safe in the treatment of BMs, achieving good local control on BMs with and low incidence of radionecrosis and leptomeningeal dissemination. Distant control appears limited compared to other radiation regimens.
Collapse
Affiliation(s)
- Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina, 60, 20132, Milan, Italy.
| | - Pierfrancesco De Domenico
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina, 60, 20132, Milan, Italy
| | - Silvia Snider
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina, 60, 20132, Milan, Italy
| | - Maria Grazia Nizzola
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina, 60, 20132, Milan, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
7
|
Rajkumar S, Liang Y, Wegner RE, Shepard MJ. Utilization of neoadjuvant stereotactic radiosurgery for the treatment of brain metastases requiring surgical resection: a topic review. J Neurooncol 2022; 160:691-705. [DOI: 10.1007/s11060-022-04190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022]
|
8
|
Neoadjuvant Stereotactic Radiotherapy for Brain Metastases: Systematic Review and Meta-Analysis of the Literature and Ongoing Clinical Trials. Cancers (Basel) 2022; 14:cancers14174328. [PMID: 36077863 PMCID: PMC9455064 DOI: 10.3390/cancers14174328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The available treatment strategies for patients with brain metastases remain suboptimal, with current research focused on identifying therapies intended to improve patient outcomes while reducing the risk of treatment-related complications. Several studies have investigated the role of pre-operative neoadjuvant stereotactic radiotherapy, and have proposed it as a valid alternative to post-operative adjuvant stereotactic radiotherapy. The aim of our systematic review was to comprehensively analyze the current literature and ongoing clinical trials evaluating neoadjuvant stereotactic radiotherapy in patients with brain metastases, describing treatment protocols and related outcomes. Early evidence suggests that neoadjuvant stereotactic radiotherapy may offer rates of local control and overall survival comparable to those obtained with adjuvant postoperative SRS, but comparative studies are currently lacking. In addition, neoadjuvant stereotactic radiotherapy shows low rates of post-treatment radiation necrosis and leptomeningeal metastases. Ongoing clinical trials aim to evaluate long-term outcomes in large patient cohorts, with some focused on comparing neoadjuvant stereotactic radiotherapy to adjuvant stereotactic radiosurgery. Abstract Background: Brain metastases (BMs) carry a high morbidity and mortality burden. Neoadjuvant stereotactic radiotherapy (NaSRT) has shown promising results. We systematically reviewed the literature on NaSRT for BMs. Methods: PubMed, EMBASE, Scopus, Web-of-Science, Cochrane, and ClinicalTrial.gov were searched following the PRISMA guidelines to include studies and ongoing trials reporting NaSRT for BMs. Indications, protocols, and outcomes were analyzed using indirect random-effect meta-analyses. Results: We included 7 studies comprising 460 patients with 483 BMs, and 13 ongoing trials. Most BMs originated from non-small lung cell carcinoma (41.4%), breast cancer (18.7%) and melanoma (43.6%). Most patients had single-BM (69.8%) located supratentorial (77.8%). Patients were eligible if they had histologically-proven primary tumors and ≤4 synchronous BMs candidate for non-urgent surgery and radiation. Patients with primary tumors clinically responsive to radiotherapy, prior brain radiation, and leptomeningeal metastases were deemed non-eligible. Median planning target volume was 9.9 cm3 (range, 2.9–57.1), and NaSRT was delivered in 1-fraction (90.9%), 5-fraction (4.8%), or 3-fraction (4.3%), with a median biological effective dose of 39.6 Gy10 (range, 35.7–60). Most patients received piecemeal (76.3%) and gross-total (94%) resection after a median of 1-day (range, 1–10) post-NaSRT. Median follow-up was 19.2-months (range, 1–41.3). Actuarial post-treatment rates were 4% (95%CI: 2–6%) for symptomatic radiation necrosis, 15% (95%CI: 12–18%) and 47% (95%CI: 42–52%) for local and distant recurrences, 6% (95%CI: 3–8%) for leptomeningeal metastases, 81% (95%CI: 75–87%) and 59% (95%CI: 54–63%) for 1-year local tumor control and overall survival. Conclusion: NaSRT is effective and safe for BMs. Ongoing trials will provide high-level evidence on long-term post-treatment outcomes, further compared to adjuvant stereotactic radiotherapy.
Collapse
|
9
|
Brenner AW, Patel AJ. Review of Current Principles of the Diagnosis and Management of Brain Metastases. Front Oncol 2022; 12:857622. [PMID: 35686091 PMCID: PMC9171239 DOI: 10.3389/fonc.2022.857622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Brain metastases are the most common intracranial tumors and are increasing in incidence as overall cancer survival improves. Diagnosis of brain metastases involves both clinical examination and magnetic resonance imaging. Treatment may involve a combination of surgery, radiotherapy, and systemic medical therapy depending on the patient's neurologic status, performance status, and overall oncologic burden. Advances in these domains have substantially impacted the management of brain metastases and improved performance status and survival for some patients. Indications for surgery have expanded with improved patient selection, imaging, and intraoperative monitoring. Robust evidence supports the use of whole brain radiotherapy and stereotactic radiosurgery, for both standalone and adjuvant indications, in almost all patients. Lastly, while systemic medical therapy has historically provided little benefit, modern immunotherapeutic agents have demonstrated promise. Current investigation seeks to determine the utility of neoadjuvant radiotherapy and laser interstitial thermal therapy, which have shown benefit in limited studies to date. This article provides a review of the epidemiology, pathology, diagnosis, and treatment of brain metastases and the corresponding supporting evidence.
Collapse
Affiliation(s)
| | - Akash J. Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|