1
|
Wang J, Wang D. Mitophagy in gynecological malignancies: roles, advances, and therapeutic potential. Cell Death Discov 2024; 10:488. [PMID: 39639053 PMCID: PMC11621523 DOI: 10.1038/s41420-024-02259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Mitophagy is a process in which impaired or dysfunctional mitochondria are selectively eliminated through the autophagy mechanism to maintain mitochondrial quality control and cellular homeostasis. Based on specific target signals, several mitophagy processes have been identified. Defects in mitophagy are associated with various pathological conditions, including neurodegenerative disorders, cardiovascular diseases, metabolic diseases, and cancer. Mitophagy has been shown to play a critical role in the pathogenesis of gynecological malignancies and the development of drug resistance. In this review, we have summarized and discussed the role and recent advances in understanding the therapeutic potential of mitophagy in the development of gynecological malignancies. Therefore, the valuable insights provided in this review may serve as a basis for further studies that contribute to the development of novel treatment strategies and improved patient outcomes.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
2
|
Luo XC, Tang P, Zhong PX. Analysis of the Effects of Bevacizumab Combined with Chemoradiotherapy on VEGF, bFGF, and Let-7 Levels in Non-Small Cell Lung Cancer and the Factors Influencing Therapeutic Efficacy: A Retrospective Cohort Study. Int J Gen Med 2024; 17:5727-5735. [PMID: 39650792 PMCID: PMC11625108 DOI: 10.2147/ijgm.s488849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/24/2024] [Indexed: 12/11/2024] Open
Abstract
Objective To explore the influence of bevacizumab combined with chemoradiotherapy on VEGF, bFGF, and Let-7 in patients with non-small cell lung cancer (NSCLC), and to analyze the factors affecting its efficacy. Methods Totally 150 patients with non-small cell lung cancer (NSCLC) treated in our hospital from November 2018 to November 2023 were retrospectively analyzed. The serum levels of VEGF, bFGF, and Let-7 were collected and compared. Patients were divided into good efficacy and poor efficacy groups based on short-term efficacy, and logistic regression analysis was used to analyze the factors affecting efficacy. Results Before treatment, there was no significant difference in the levels of VEGF, bFGF, and Let-7 between the two groups (P>0.05). After treatment, the levels of VEGF, bFGF, and Let-7 in both groups improved compared to before treatment, and compared with the control group, the study group had lower levels of VEGF and bFGF, and higher levels of Let-7, with statistically significant differences (all P<0.05). Multifactorial logistic regression analysis revealed that the course of disease, tumor diameter, and treatment regimen were independent factors influencing the therapeutic efficacy of NSCLC (all P<0.05). Conclusion For patients with NSCLC, the treatment regimen of bevacizumab combined with chemoradiotherapy can achieve better efficacy, with a higher objective response rate, effectively reduce the level of vascular endothelial growth factor, increase Let-7 level, and ensure safety. In addition, disease course, tumor diameter, and treatment regimen are independent factors affecting the efficacy of NSCLC. Therefore, these factors should be comprehensively considered when formulating treatment plans to ensure the best therapeutic effect.
Collapse
Affiliation(s)
- Xiang-Chong Luo
- Department of Cardiothoracic Surgery, The Second People’s Hospital of Qujing City, Qujing City, Yunnan Province, People’s Republic of China
| | - Peng Tang
- Department of TCM Pharmacy, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, People’s Republic of China
| | - Pei-Xiong Zhong
- Department of Respiratory and Critical Care Medicine, Haikou Third People’s Hospital, Haikou, People’s Republic of China
| |
Collapse
|
3
|
Takamatsu S, Hillman RT, Yoshihara K, Baba T, Shimada M, Yoshida H, Kajiyama H, Oda K, Mandai M, Okamoto A, Enomoto T, Matsumura N. Molecular classification of ovarian high-grade serous/endometrioid carcinomas through multi-omics analysis: JGOG3025-TR2 study. Br J Cancer 2024; 131:1340-1349. [PMID: 39215190 PMCID: PMC11473812 DOI: 10.1038/s41416-024-02837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Considerable interobserver variability exists in diagnosis of ovarian high-grade endometrioid carcinoma (HGEC) and high-grade serous carcinoma (HGSC) due to histopathological similarities. While homologous recombination deficiency (HRD) correlates with drug sensitivity in HGSC, the molecular features of HGEC are unclear. METHODS Fresh-frozen samples from 15 ovarian HGECs and 274 ovarian HGSCs in the JGOG-TR2 cohort were submitted to targeted DNA sequencing, RNA sequencing, DNA methylation array, and SNP array. We additionally analyzed 555 ovarian HGSCs from TCGA-OV and 287 endometrial high-grade carcinomas from TCGA-UCEC. RESULTS Unsupervised clustering using copy number signatures identified four distinct tumor groups (C1, C2, C3 and C4). C1 (n = 41) showed CCNE1 amplification and poor survival. C2 (n = 160) and C3 (n = 59) showed high BRCA1/2 alteration frequency with low and moderate ploidy, respectively. C4 (n = 22) was characterized by favorable outcome, higher HGEC proportion, no BRCA1/2 alteration or CCNE1 amplification, and low levels of HRD score, ploidy, intra-tumoral heterogeneity, cell proliferation rate, and WT1 gene expression. Notably, C4 exhibited a normal endometrium-like DNA methylation profile, thus, defined as "HGEC-type" tumors, which were also identified in TCGA-OV and TCGA-UCEC. CONCLUSIONS Ovarian "HGEC-type" tumors present a non-HRD status, favorable prognosis, and endometrial differentiation, possibly constituting a subset of clinically diagnosed HGSCs.
Collapse
Affiliation(s)
- Shiro Takamatsu
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Tyler Hillman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- CPRIT Scholar in Cancer Research, Houston, TX, USA
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University, Morioka, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Yoshida
- Department of Obstetrics and Gynecology, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, The University of Tokyo, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
| |
Collapse
|
4
|
Ueda A, Nakai H, Miyagawa C, Otani T, Yoshida M, Murakami R, Komiyama S, Tanigawa T, Yokoi T, Takano H, Baba T, Miura K, Shimada M, Kigawa J, Enomoto T, Hamanishi J, Okamoto A, Okuno Y, Mandai M, Matsumura N. Artificial Intelligence-Based Histopathological Subtyping of High-Grade Serous Ovarian Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1913-1923. [PMID: 39032605 DOI: 10.1016/j.ajpath.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Four subtypes of ovarian high-grade serous carcinoma (HGSC) have previously been identified, each with different prognoses and drug sensitivities. However, the accuracy of classification depended on the assessor's experience. This study aimed to develop a universal algorithm for HGSC-subtype classification using deep learning techniques. An artificial intelligence (AI)-based classification algorithm, which replicates the consensus diagnosis of pathologists, was formulated to analyze the morphological patterns and tumor-infiltrating lymphocyte counts for each tile extracted from whole slide images of ovarian HGSC available in The Cancer Genome Atlas (TCGA) data set. The accuracy of the algorithm was determined using the validation set from the Japanese Gynecologic Oncology Group 3022A1 (JGOG3022A1) and Kindai and Kyoto University (Kindai/Kyoto) cohorts. The algorithm classified the four HGSC-subtypes with mean accuracies of 0.933, 0.910, and 0.862 for the TCGA, JGOG3022A1, and Kindai/Kyoto cohorts, respectively. To compare mesenchymal transition (MT) with non-MT groups, overall survival analysis was performed in the TCGA data set. The AI-based prediction of HGSC-subtype classification in TCGA cases showed that the MT group had a worse prognosis than the non-MT group (P = 0.017). Furthermore, Cox proportional hazard regression analysis identified AI-based MT subtype classification prediction as a contributing factor along with residual disease after surgery, stage, and age. In conclusion, a robust AI-based HGSC-subtype classification algorithm was established using virtual slides of ovarian HGSC.
Collapse
Affiliation(s)
- Akihiko Ueda
- Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Departments of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Chiho Miyagawa
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomoyuki Otani
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Manabu Yoshida
- Department of Pathology, Matsue City Hospital, Matsue City, Japan
| | - Ryusuke Murakami
- Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Komiyama
- Department of Obstetrics and Gynecology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Terumi Tanigawa
- Department of Gynecologic Oncology, Cancer Institute Hospital, Tokyo, Japan
| | - Takeshi Yokoi
- Department of Obstetrics and Gynecology, Kaizuka City Hospital, Osaka, Japan
| | - Hirokuni Takano
- Department of Obstetrics and Gynecology, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Kiyonori Miura
- Department of Gynecology and Obstetrics, Nagasaki University Graduate School of Biolomedical Sciences, Nagasaki, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junzo Kigawa
- Department of Gynecology and Obstetrics, Matsue City Hospital, Matsue City, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junzo Hamanishi
- Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Okuno
- Departments of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Sciences Innovation Hub Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Masaki Mandai
- Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan.
| |
Collapse
|
5
|
McAdams J, Ebott J, Jansen C, Kim C, Maiz D, Ou J, Hanley LC, Cruz PDL, James NE. Neoadjuvant chemotherapy induces phenotypic mast cell changes in high grade serous ovarian cancer. J Ovarian Res 2024; 17:192. [PMID: 39342316 PMCID: PMC11438021 DOI: 10.1186/s13048-024-01516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND High grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy in which patients have still yet to respond meaningfully to clinically available immunotherapies. Hence, novel immune targets are urgently needed. Our past work has identified that mast cells are significantly upregulated at the mRNA level in HGSOC patient tumors following neoadjuvant chemotherapy (NACT) exposure. Therefore, in this current investigation we sought to characterize intratumoral mast cell phenotypic changes as a result of NACT exposure and determine how these adaptations are associated with patient clinical outcomes. METHODS Hematologic immunohistochemistry was employed to determine mast cell levels in 36 matched pre- and post-NACT HGSOC patient tumors. Fluorescent Immunohistochemistry was utilized to identify Tryptase+(carboxypeptidase A3 (CPA3) + mast cells as well as histamine levels in 29 and 20, respectively, matched pre- and post-NACT HGSOC patient tumors. Finally, human immortalized mast cells, LUVA were stimulated with carboplatin and paclitaxel and genomic changes were analyzed by quantitative PCR. RESULTS Hematologic labeled intratumoral mast cells were significantly upregulated in the intraepithelial and stromal regions of the tumor, post-NACT. Lower levels of pre-NACT mast cells were significantly associated with an improved progression-free survival (PFS). Histamine, a marker of mast cell degranulation was similarly upregulated in post-NACT exposed tumors. Through the characterization of mast cell specific proteases Tryptase and CPA3, it was found that Tryptase+/ CPA3 + mast cells were significantly upregulated both in the intraepithelial and stromal compartments of the tumor, while Tryptase + cells were significantly upregulated in the stromal regions of the tumor. Lower post-NACT treated levels with Tryptase+/ CPA3 + cells were significantly associated with improved overall survival (OS) and PFS while higher Tryptase + mast cells were associated with improved OS. Finally, following chemotherapy exposure mast cell activating factors AREG and CCL2 were significantly upregulated while TGFB1, an inhibitor of mast cell activation was downregulated in LUVA cells. CONCLUSIONS Enhanced mast cell numbers, as well as activation and degranulation are a consequence of NACT exposure. Post-NACT mast cells displayed differing associations with survival outcomes that was dependent upon granule classification. Ultimately, mast cells represent a clinically relevant putative HGSOC immune target.
Collapse
Affiliation(s)
- Julia McAdams
- Program in Women's Oncology, Women and Infants Hospital, Providence, RI, USA
| | - Jasmine Ebott
- Program in Women's Oncology, Women and Infants Hospital, Providence, RI, USA
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Warren-Alpert Medical School of Brown University, 200 Chestnut Street, Room 208, Providence, RI, 02903, USA
| | - Corinne Jansen
- Program in Women's Oncology, Women and Infants Hospital, Providence, RI, USA
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Warren-Alpert Medical School of Brown University, 200 Chestnut Street, Room 208, Providence, RI, 02903, USA
| | - Chloe Kim
- School of Public Health, Brown University, Providence, RI, USA
| | - Daniela Maiz
- Department of Pathobiology, Brown University, Providence, RI, USA
| | - Joyce Ou
- Department of Pathology, Women and Infants Hospital, Providence, RI, USA
| | - Linda C Hanley
- Department of Pathology, Women and Infants Hospital, Providence, RI, USA
| | | | - Nicole E James
- Program in Women's Oncology, Women and Infants Hospital, Providence, RI, USA.
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Warren-Alpert Medical School of Brown University, 200 Chestnut Street, Room 208, Providence, RI, 02903, USA.
| |
Collapse
|
6
|
Li X, Li Z, Ma H, Li X, Zhai H, Li X, Cheng X, Zhao X, Zhao Z, Hao Z. Ovarian cancer: Diagnosis and treatment strategies (Review). Oncol Lett 2024; 28:441. [PMID: 39099583 PMCID: PMC11294909 DOI: 10.3892/ol.2024.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Ovarian cancer is a malignant tumor that seriously endangers health. Early ovarian cancer symptoms are frequently challenging to detect, resulting in a large proportion of patients reaching an advanced stage when diagnosed. Conventional diagnosis relies heavily on serum biomarkers and pathological examination, but their sensitivity and specificity require improvement. Targeted therapy inhibits tumor growth by targeting certain characteristics of tumor cells, such as signaling pathways and gene mutations. However, the effectiveness of targeted therapy varies among individuals due to differences in their unique biological characteristics and requires individualized strategies. Immunotherapy is a promising treatment for ovarian cancer due to its long-lasting antitumor effect. Nevertheless, issues such as variable efficacy, immune-associated adverse effects and drug resistance remain to be resolved. The present review discusses the diagnostic strategies, rationale, treatment strategies and prospects of targeted therapy and immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhuocheng Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Huiling Ma
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xinwei Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hongxiao Zhai
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xixi Li
- Department of Ultrasound, Zhengzhou First People's Hospital, Zhengzhou, Henan 450004, P.R. China
| | - Xiaofei Cheng
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaohui Zhao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhilong Zhao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenhua Hao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
7
|
Vijayakumar S, Dhakshanamoorthy R, Baskaran A, Sabari Krishnan B, Maddaly R. Drug resistance in human cancers - Mechanisms and implications. Life Sci 2024; 352:122907. [PMID: 39004273 DOI: 10.1016/j.lfs.2024.122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cancers have complex etiology and pose a significant impact from the health care perspective apart from the socio-economic implications. The enormity of challenge posed by cancers can be understood from the fact that clinical trials for cancer therapy has yielded minimum potential promises compared to those obtained for other diseases. Surgery, chemotherapy and radiotherapy continue to be the mainstay therapeutic options for cancers. Among the challenges posed by these options, induced resistance to chemotherapeutic drugs is probably the most significant contributor for poor prognosis and ineffectiveness of the therapy. Drug resistance is a property exhibited by almost all cancer types including carcinomas, leukemias, myelomas, sarcomas and lymphomas. The mechanisms by which drug resistance is induced include the factors within the tumor microenvironment, mutations in the genes responsible for drug metabolism, changes in the surface drug receptors and increased drug efflux. We present here comprehensively the drug resistance in cancers along with their mechanisms. Also, apart from resistance to regularly used chemotherapeutic drugs, we present resistance induction to new generation therapeutic agents such as monoclonal antibodies. Finally, we have discussed the experimental approaches to understand the mechanisms underlying induction of drug resistance and potential ways to mitigate induced drug resistance.
Collapse
Affiliation(s)
- Sudikshaa Vijayakumar
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Raveena Dhakshanamoorthy
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Akshaya Baskaran
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - B Sabari Krishnan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
8
|
Zhou W, Zeng T, Chen J, Tang X, Yuan Y, Hu D, Zhang Y, Li Y, Zou J. Aberrant angiogenic signaling pathways: Accomplices in ovarian cancer progression and treatment. Cell Signal 2024; 120:111240. [PMID: 38823664 DOI: 10.1016/j.cellsig.2024.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Ovarian cancer is one of the most common malignant tumors in women, and treatment options are limited. Despite efforts to adjust cancer treatment models and develop new methods, including tumor microenvironment (TME) therapy, more theoretical support is needed. Increasing attention is being given to antiangiogenic measures for TME treatment. Another important concept in ovarian cancer TME is angiogenesis, where tumor cells obtain nutrients and oxygen from surrounding tissues through blood vessels to support further expansion and metastasis. Many neovascularization signaling pathways become imbalanced and hyperactive during this process. Inhibiting these abnormal pathways can yield ideal therapeutic effects in patients, even by reversing drug resistance. However, these deep TME signaling pathways often exhibit crosstalk and correlation. Understanding these interactions may be an important strategy for further treating ovarian cancer. This review summarizes the latest progress and therapeutic strategies for these angiogenic signaling pathways in ovarian cancer.
Collapse
Affiliation(s)
- Wenchao Zhou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junling Chen
- Department of Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yuwei Yuan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Daopu Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yue Zhang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
9
|
Satora M, Kułak K, Zaremba B, Grunwald A, Świechowska-Starek P, Tarkowski R. New hopes and promises in the treatment of ovarian cancer focusing on targeted treatment-a narrative review. Front Pharmacol 2024; 15:1416555. [PMID: 38948462 PMCID: PMC11212463 DOI: 10.3389/fphar.2024.1416555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Unfortunately, ovarian cancer is still diagnosed most often only in an advanced stage and is also the most lethal gynecological cancer. Another problem is the fact that treated patients have a high risk of disease recurrence. Moreover, ovarian cancer is very diverse in terms of molecular, histological features and mutations. Many patients may also develop platinum resistance, resulting in poor response to subsequent lines of treatment. To improve the prognosis of patients with ovarian cancer, it is expected to make better existing and implement new, promising treatment methods. Targeted therapies seem very promising. Currently, bevacizumab - a VEGF inhibitor and therapy with olaparib - a polyADP-ribose polymerase inhibitor are approved. Other methods worth considering in the future include: folate receptor α, immune checkpoints or other immunotherapy methods. To improve the treatment of ovarian cancer, it is also important to ameliorate the determination of molecular features to describe and understand which group of patients will benefit most from a given treatment method. This is important because a larger group of patients treated for ovarian cancer can have a greater chance of surviving longer without recurrence.
Collapse
Affiliation(s)
- Małgorzata Satora
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Kułak
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| | - Bartłomiej Zaremba
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Grunwald
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | | | - Rafał Tarkowski
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
10
|
Stiegeler N, Garsed DW, Au-Yeung G, Bowtell DDL, Heinzelmann-Schwarz V, Zwimpfer TA. Homologous recombination proficient subtypes of high-grade serous ovarian cancer: treatment options for a poor prognosis group. Front Oncol 2024; 14:1387281. [PMID: 38894867 PMCID: PMC11183307 DOI: 10.3389/fonc.2024.1387281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Approximately 50% of tubo-ovarian high-grade serous carcinomas (HGSCs) have functional homologous recombination-mediated (HR) DNA repair, so-called HR-proficient tumors, which are often associated with primary platinum resistance (relapse within six months after completion of first-line therapy), minimal benefit from poly(ADP-ribose) polymerase (PARP) inhibitors, and shorter survival. HR-proficient tumors comprise multiple molecular subtypes including cases with CCNE1 amplification, AKT2 amplification or CDK12 alteration, and are often characterized as "cold" tumors with fewer infiltrating lymphocytes and decreased expression of PD-1/PD-L1. Several new treatment approaches aim to manipulate these negative prognostic features and render HR-proficient tumors more susceptible to treatment. Alterations in multiple different molecules and pathways in the DNA damage response are driving new drug development to target HR-proficient cancer cells, such as inhibitors of the CDK or P13K/AKT pathways, as well as ATR inhibitors. Treatment combinations with chemotherapy or PARP inhibitors and agents targeting DNA replication stress have shown promising preclinical and clinical results. New approaches in immunotherapy are also being explored, including vaccines or antibody drug conjugates. Many approaches are still in the early stages of development and further clinical trials will determine their clinical relevance. There is a need to include HR-proficient tumors in ovarian cancer trials and to analyze them in a more targeted manner to provide further evidence for their specific therapy, as this will be crucial in improving the overall prognosis of HGSC and ovarian cancer in general.
Collapse
Affiliation(s)
| | - Dale W. Garsed
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - George Au-Yeung
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - David D. L. Bowtell
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Tibor A. Zwimpfer
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Gynecological Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
11
|
Kang Y, Li H, Liu Y, Li Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J Cancer Res Clin Oncol 2024; 150:221. [PMID: 38687357 PMCID: PMC11061008 DOI: 10.1007/s00432-024-05714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Vascular endothelial growth factor A (VEGF-A), a highly conserved dimeric glycoprotein, is a key regulatory gene and a marker molecule of angiogenesis. The upregulation of VEGF-A facilitates the process of tumor vascularization, thereby fostering the initiation and progression of malignant neoplasms. Many genes can adjust the angiogenesis of tumors by changing the expression of VEGF-A. In addition, VEGF-A also exhibits immune regulatory properties, which directly or indirectly suppresses the antitumor activity of immune cells. The emergence of VEGF-A-targeted therapy alone or in rational combinations has revolutionized the treatment of various cancers. This review discusses how diverse mechanisms in various tumors regulate VEGF-A expression to promote tumor angiogenesis and the role of VEGF-A in tumor immune microenvironment. The application of drugs targeting VEGF-A in tumor therapy is also summarized including antibody molecule drugs and traditional Chinese medicine.
Collapse
Affiliation(s)
- Yan Kang
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Huiting Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yiping Liu
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Tavares V, Marques IS, Melo IGD, Assis J, Pereira D, Medeiros R. Paradigm Shift: A Comprehensive Review of Ovarian Cancer Management in an Era of Advancements. Int J Mol Sci 2024; 25:1845. [PMID: 38339123 PMCID: PMC10856127 DOI: 10.3390/ijms25031845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Ovarian cancer (OC) is the female genital malignancy with the highest lethality. Patients present a poor prognosis mainly due to the late clinical presentation allied with the common acquisition of chemoresistance and a high rate of tumour recurrence. Effective screening, accurate diagnosis, and personalised multidisciplinary treatments are crucial for improving patients' survival and quality of life. This comprehensive narrative review aims to describe the current knowledge on the aetiology, prevention, diagnosis, and treatment of OC, highlighting the latest significant advancements and future directions. Traditionally, OC treatment involves the combination of cytoreductive surgery and platinum-based chemotherapy. Although more therapeutical approaches have been developed, the lack of established predictive biomarkers to guide disease management has led to only marginal improvements in progression-free survival (PFS) while patients face an increasing level of toxicity. Fortunately, because of a better overall understanding of ovarian tumourigenesis and advancements in the disease's (epi)genetic and molecular profiling, a paradigm shift has emerged with the identification of new disease biomarkers and the proposal of targeted therapeutic approaches to postpone disease recurrence and decrease side effects, while increasing patients' survival. Despite this progress, several challenges in disease management, including disease heterogeneity and drug resistance, still need to be overcome.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
13
|
Yu P, Wang Y, Yuan D, Sun Y, Qin S, Li T. Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer. Front Immunol 2023; 14:1276694. [PMID: 37936692 PMCID: PMC10626545 DOI: 10.3389/fimmu.2023.1276694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Ovarian cancer remains a challenging disease with limited treatment options and poor prognosis. The tumor microenvironment (TME) plays a crucial role in tumor growth, progression, and therapy response. One characteristic feature of the TME is the abnormal tumor vasculature, which is associated with inadequate blood perfusion, hypoxia, and immune evasion. Vascular normalization, a therapeutic strategy aiming to rectify the abnormal tumor vasculature, has emerged as a promising approach to reshape the TME, enhance antitumor immunity, and synergize with immunotherapy in ovarian cancer. This review paper provides a comprehensive overview of vascular normalization and its potential implications in ovarian cancer. In this review, we summarize the intricate interplay between anti-angiogenesis and immune modulation, as well as ICI combined with anti-angiogenesis therapy in ovarian cancer. The compelling evidence discussed in this review contributes to the growing body of knowledge supporting the utilization of combination therapy as a promising treatment paradigm for ovarian cancer, paving the way for further clinical development and optimization of this therapeutic approach.
Collapse
Affiliation(s)
- Ping Yu
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yaru Wang
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Dahai Yuan
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yunqin Sun
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianye Li
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Nakai H, Matsumura N. Selection of maintenance therapy during first-line treatment of advanced ovarian cancer based on pharmacologic characteristics. Expert Opin Pharmacother 2023; 24:2161-2173. [PMID: 38111255 DOI: 10.1080/14656566.2023.2295393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Maintenance therapy with bevacizumab and the poly (ADP-ribose) polymerase (PARP) inhibitors olaparib and niraparib after first-line treatment of advanced ovarian cancer has been approved. However, it is not clear which one should be used for which patients. AREAS COVERED This paper presents a detailed analysis of data from phase 3 trials in ovarian cancer evaluating bevacizumab (ICON7, GOG-0218), olaparib (SOLO1, PAOLA-1), and niraparib (PRIMA, PRIME). We will discuss how the results of these trials relate to the 'rebound effect,' in which the risk of progression increases after discontinuation of bevacizumab in patients receiving bevacizumab, and to the significant difference in tissue permeability between olaparib and niraparib. EXPERT OPINION In patients with homologous recombination deficiency and no macroscopic residual disease (R0) after primary debulking surgery (PDS), the combination of bevacizumab plus olaparib seems to be the best regimen. Olaparib monotherapy is suitable for patients with BRCA mutations other than PDS R0. Bevacizumab is most useful in cases with a short duration of the rebound effect, i.e. short survival. Niraparib is useful in others but may be more useful in Asians.
Collapse
Affiliation(s)
- Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
15
|
Mishra Y, Chattaraj A, Mishra V, Ranjan A, Tambuwala MM. Aptamers Versus Vascular Endothelial Growth Factor (VEGF): A New Battle against Ovarian Cancer. Pharmaceuticals (Basel) 2023; 16:849. [PMID: 37375796 DOI: 10.3390/ph16060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer is one of the diseases that causes a high mortality as it involves unregulated and abnormal cell growth proliferation that can manifest in any body region. One of the typical ovarian cancer symptoms is damage to the female reproductive system. The death rate can be reduced through early detection of the ovarian cancer. Promising probes that can detect ovarian cancer are suitable aptamers. Aptamers, i.e., so-called chemical antibodies, have a strong affinity for the target biomarker and can typically be identified starting from a random library of oligonucleotides. Compared with other probes, ovarian cancer targeting using aptamers has demonstrated superior detection effectiveness. Various aptamers have been selected to detect the ovarian tumor biomarker, vascular endothelial growth factor (VEGF). The present review highlights the development of particular aptamers that target VEGF and detect ovarian cancer at its earliest stages. The therapeutic efficacy of aptamers in ovarian cancer treatment is also discussed.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Abhigyan Ranjan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| |
Collapse
|
16
|
Xu W, Wang M, Bai Y, Chen Y, Ma X, Yang Z, Zhao L, Li Y. The role of microfibrillar‐associated protein 2 in cancer. Front Oncol 2022; 12:1002036. [DOI: 10.3389/fonc.2022.1002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Microfibrillar-associated protein 2 (MFAP2), a component of the extracellular matrix, is important in controlling growth factor signal transduction. Recent studies have shown that MFAP2, an effective prognostic molecule for various tumors, is associated with tumor occurrence and development and may be involved in remodeling the extracellular matrix and regulating proliferation, apoptosis, invasion, tumor cell metastasis, and tumor angiogenesis. However, MFAP2’s specific mechanism in these tumor processes remains unclear. This article reviewed the possible mechanism of MFAP2 in tumorigenesis and progression and provided a reference for the clinical prognosis of patients with cancer and new therapeutic target discovery.
Collapse
|
17
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
18
|
Chen Q, Wang J, Xia Q, Wu L, Chen F, Li L, Zhu C, He M, Jiang Y, Huang Y, Ding H, Wu R, Zhang L, Song Y, Liu L. Treatment outcomes of injectable thermosensitive hydrogel containing bevacizumab in intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:976706. [PMID: 36213074 PMCID: PMC9533143 DOI: 10.3389/fbioe.2022.976706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a common musculoskeletal disease and its treatment remains a clinical challenge. It is characterised by reduced cell numbers and degeneration of the extracellular matrix (ECM). Nucleus pulposus (NP) cells play a crucial role in this process. The purpose of this study is to explore the role of bevacizumab, a vascular endothelial growth factor (VEGF) inhibitor, in the treatment of IDD through local drug delivery. High expression of VEGF was observed in degenerating human and rat IVDs. We demonstrated that MMP3 expression was decreased and COL II synthesis was promoted, when VEGF expression was inhibited by bevacizumab, thereby improving the degree of disc degeneration. Thus, these findings provide strong evidence that inhibition of VEGF expression by local delivery of bevacizumab is safe and effective in ameliorating disc degeneration in rats. The injectable thermosensitive PLGA-PEG-PLGA hydrogels loaded with bevacizumab is a potential therapeutic option for disc degeneration.
Collapse
Affiliation(s)
- Qian Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Juehan Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Lei Wu
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- The Institute of Clinic Pathology, Sichuan University, Chengdu, China
| | - Li Li
- The Institute of Clinic Pathology, Sichuan University, Chengdu, China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Miaomiao He
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, China
| | - Yulin Jiang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, China
| | - Yong Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Ding
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruibang Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, China
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liming Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Liming Liu,
| |
Collapse
|
19
|
Nakai H, Matsumura N. Individualization in the first-line treatment of advanced ovarian cancer based on the mechanism of action of molecularly targeted drugs. Int J Clin Oncol 2022; 27:1001-1012. [PMID: 35416600 PMCID: PMC9006498 DOI: 10.1007/s10147-022-02163-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 12/20/2022]
Abstract
With the development of poly(ADP-ribose) polymerase inhibitors, the treatment of advanced ovarian cancer is changing dramatically. The purpose of this narrative review is to provide a direction for the individualization of advanced ovarian cancer treatment based on the mechanism of action of molecularly targeted drugs currently used in Japan. The PAOLA-1 study showed very good progression-free survival in patients with homologous recombination deficiency tumors who underwent complete surgery with primary debulking surgery and who received olaparib plus bevacizumab. Niraparib has high intratumor penetration, and in a subgroup analysis of the PRIMA study, it was most effective in patients with residual tumors after interval debulking surgery. These data suggest the importance of achieving complete surgery and aiming for cure in the treatment of ovarian cancer and how the use of bevacizumab, olaparib, and niraparib should be individualized.
Collapse
Affiliation(s)
- Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, 377-2, Ohnohigashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, 377-2, Ohnohigashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| |
Collapse
|