1
|
Singh H, Sahajpal NS, Mondal AK, Burke SL, Farmaha J, Alptekin A, Vashisht A, Jones K, Vashisht V, Kolhe R. Clinical Utility of Optical Genome Mapping for Improved Cytogenomic Analysis of Gliomas. Biomedicines 2024; 12:1659. [PMID: 39200124 PMCID: PMC11351424 DOI: 10.3390/biomedicines12081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
A glioma is a solid brain tumor which originates in the brain or brain stem area. The diagnosis of gliomas based on standard-of-care (SOC) techniques includes karyotyping, fluorescence in situ hybridization (FISH), and chromosomal microarray (CMA), for detecting the pathogenic variants and chromosomal abnormalities. But these techniques do not reveal the complete picture of genetic complexity, thus requiring an alternative technology for better characterization of these tumors. The present study aimed to evaluate the clinical performance and feasibility of using optical genome mapping (OGM) for chromosomal characterization of gliomas. Herein, we evaluated 10 cases of gliomas that were previously characterized by CMA. OGM analysis showed concordance with the results of CMA in identifying the characterized Structural Variants (SVs) in these cases. More notably, it also revealed additional clinically relevant aberrations, demonstrating a higher resolution and sensitivity. These clinically relevant SVs included cryptic translocation, and SVs which are beyond the detection capabilities of CMA. Our analysis highlights the unique capability of OGM to detect all classes of SVs within a single assay, thereby unveiling clinically significant data with a shorter turnaround time. Adopting this diagnostic tool as a standard of care for solid tumors like gliomas shows potential for improving therapeutic management, potentially leading to more personalized and timely interventions for patients.
Collapse
Affiliation(s)
- Harmanpreet Singh
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | | | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | - Stephanie L. Burke
- Clinical and Scientific Affairs, Bionano Genomics, San Diego, CA 92121, USA
| | - Jaspreet Farmaha
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | - Ahmet Alptekin
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | - Ashutosh Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | - Kimya Jones
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | - Vishakha Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.S.); (A.K.M.); (J.F.); (A.V.); (K.J.); (V.V.)
| |
Collapse
|
2
|
Zhang J, Li R, Zhang H, Wang S, Zhao Y. ITGA2 as a prognostic factor of glioma promotes GSCs invasion and EMT by activating STAT3 phosphorylation. Carcinogenesis 2024; 45:235-246. [PMID: 38142122 DOI: 10.1093/carcin/bgad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/24/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
Glioma is the most common malignant brain tumor in adults with a high mortality and recurrence rate. Integrin alpha 2 (ITGA2) is involved in cell adhesion, stem cell regulation, angiogenesis and immune cell function. The role of ITGA2 in glioma malignant invasion remains unknown. The function and clinical relevance of ITGA2 were analysed by bioinformatics databases. The expression of ITGA2 in parent cells and GSCs was detected by flow cytometry and immunofluorescence double staining. The role of ITGA2 on the malignant phenotype of GSCs and epithelial-mesenchymal transition (EMT) was identified by stem cell function assays and Western blot. The effect of ITGA2 on glioma progression in vivo was determined by the intracranial orthotopic xenograft model. Immunohistochemistry, Spearman correlation and Kaplan-Meier were used to analyse the relationship of ITGA2 with clinical features and glioma prognosis. Biological analysis showed that ITGA2 might be related to cell invasion and migration. ITGA2, enriched in GSCs and co-expressed with SOX2, promoted the invasion and migration of GSCs by activating STAT3 phosphorylation and enhancing EMT. ITGA2 knockout suppressed the intracranial orthotopic xenograft growth and prolonged the survival of xenograft mice. In addition, the expression level of ITGA2 was significantly correlated to the grade of malignancy, N-cadherin and Ki67. High expression of ITGA2 indicated a worse prognosis of glioma patients. As a biomarker for the prediction of prognosis, ITGA2 promotes the malignant invasion of GSCs by activating STAT3 phosphorylation and enhancing EMT, leading to tumor recurrence and poor prognosis.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stoke Center, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stoke Center, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stoke Center, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shanshan Wang
- Department of Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Stoke Center, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
3
|
Chien MH, Yang YC, Ho KH, Ding YF, Chen LH, Chiu WK, Chen JQ, Tung MC, Hsiao M, Lee WJ. Cyclic increase in the ADAMTS1-L1CAM-EGFR axis promotes the EMT and cervical lymph node metastasis of oral squamous cell carcinoma. Cell Death Dis 2024; 15:82. [PMID: 38263290 PMCID: PMC10805752 DOI: 10.1038/s41419-024-06452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
The matrix metalloprotease A disintegrin and metalloprotease with thrombospondin motifs 1 (ADAMTS1) was reported to be involved in tumor progression in several cancer types, but its contributions appear discrepant. At present, the role of ADAMTS1 in oral squamous cell carcinoma (SCC; OSCC) remains unclear. Herein, The Cancer Genome Atlas (TCGA) database showed that ADAMTS1 transcripts were downregulated in head and neck SCC (HNSCC) tissues compared to normal tissues, but ADAMTS1 levels were correlated with poorer prognoses of HNSCC patients. In vitro, we observed that ADAMTS1 expression levels were correlated with the invasive abilities of four OSCC cell lines, HSC-3, SCC9, HSC-3M, and SAS. Knockdown of ADAMTS1 in OSCC cells led to a decrease and its overexpression led to an increase in cell-invasive abilities in vitro as well as tumor growth and lymph node (LN) metastasis in OSCC xenografts. Mechanistic investigations showed that the cyclic increase in ADAMTS1-L1 cell adhesion molecule (L1CAM) axis-mediated epidermal growth factor receptor (EGFR) activation led to exacerbation of the invasive abilities of OSCC cells via inducing epithelial-mesenchymal transition (EMT) progression. Clinical analyses revealed that ADAMTS1, L1CAM, and EGFR levels were all correlated with worse prognoses of HNSCC patients, and patients with ADAMTS1high/L1CAMhigh or EGFRhigh tumors had the shortest overall and disease-specific survival times. As to therapeutic aspects, we discovered that an edible plant-derived flavonoid, apigenin (API), drastically inhibited expression of the ADAMTS1-L1CAM-EGFR axis and reduced the ADAMTS1-triggered invasion and LN metastasis of OSCC cells in vitro and in vivo. Most importantly, API treatment significantly prolonged survival rates of xenograft mice with OSCC. In summary, ADAMTS1 may be a useful biomarker for predicting OSCC progression, and API potentially retarded OSCC progression by targeting the ADAMTS1-L1CAM-EGFR signaling pathway.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fang Ding
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsin Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Kuan Chiu
- Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Surgery, Taipei Medical University, Taipei, Taiwan
| | - Ji-Qing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Cancer Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Min-Che Tung
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Kim J, Potez M, She C, Huang P, Wu Q, Bao S, Rich JN, Liu JKC. Glioblastoma Stem Cell Targeting Peptide Isolated Through Phage Display Binds Cadherin 2. Stem Cells 2023; 41:762-774. [PMID: 37280108 PMCID: PMC10427963 DOI: 10.1093/stmcls/sxad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Glioblastoma stem cells (GSCs) have unique properties of self-renewal and tumor initiation that make them potential therapeutic targets. Development of effective therapeutic strategies against GSCs requires both specificity of targeting and intracranial penetration through the blood-brain barrier. We have previously demonstrated the use of in vitro and in vivo phage display biopanning strategies to isolate glioblastoma targeting peptides. Here we selected a 7-amino acid peptide, AWEFYFP, which was independently isolated in both the in vitro and in vivo screens and demonstrated that it was able to target GSCs over differentiated glioma cells and non-neoplastic brain cells. When conjugated to Cyanine 5.5 and intravenously injected into mice with intracranially xenografted glioblastoma, the peptide localized to the site of the tumor, demonstrating intracranial tumor targeting specificity. Immunoprecipitation of the peptide with GSC proteins revealed Cadherin 2 as the glioblastoma cell surface receptor targeted by the peptides. Peptide targeting of Cadherin 2 on GSCs was confirmed through ELISA and in vitro binding analysis. Interrogation of glioblastoma databases demonstrated that Cadherin 2 expression correlated with tumor grade and survival. These results confirm that phage display can be used to isolate unique tumor-targeting peptides specific for glioblastoma. Furthermore, analysis of these cell specific peptides can lead to the discovery of cell specific receptor targets that may serve as the focus of future theragnostic tumor-homing modalities for the development of precision strategies for the treatment and diagnosis of glioblastomas.
Collapse
Affiliation(s)
- JongMyung Kim
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institution, Tampa, FL, USA
| | - Marine Potez
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institution, Tampa, FL, USA
| | - Chunhua She
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institution, Tampa, FL, USA
| | - Ping Huang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James K C Liu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institution, Tampa, FL, USA
- University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|