1
|
MATSUMOTO Y, YAMASAKI S, HAYAMA K, IINO R, NOJI H, YAMAGUCHI A, NISHINO K. Changes in the expression of mexB, mexY, and oprD in clinical Pseudomonas aeruginosa isolates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:57-67. [PMID: 38199247 PMCID: PMC10864171 DOI: 10.2183/pjab.100.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
Changes in expression levels of drug efflux pump genes, mexB and mexY, and porin gene oprD in Pseudomonas aeruginosa were investigated in this study. Fifty-five multidrug-resistant P. aeruginosa (MDRP) strains were compared with 26 drug-sensitive strains and 21 strains resistant to a single antibiotic. The effect of the efflux inhibitor Phe-Arg-β-naphthylamide on drug susceptibility was determined, and gene expression was quantified using real-time quantitative real-time reverse transcription polymerase chain reaction. In addition, the levels of metallo-β-lactamase (MBL) and 6'-N-aminoglycoside acetyltransferase [AAC(6')-Iae] were investigated. Efflux pump inhibitor treatment increased the sensitivity to ciprofloxacin, aztreonam, and imipenem in 71%, 73%, and 29% of MDRPs, respectively. MBL and AAC(6')-Iae were detected in 38 (69%) and 34 (62%) MDRP strains, respectively. Meanwhile, 76% of MDRP strains exhibited more than 8-fold higher mexY expression than the reference strain PAO1. Furthermore, 69% of MDRP strains expressed oprD at levels less than 0.01-fold of those in PAO1. These findings indicated that efflux pump inhibitors in combination with ciprofloxacin or aztreonam might aid in treating MDRP infections.
Collapse
Affiliation(s)
- Yoshimi MATSUMOTO
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Seiji YAMASAKI
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Kouhei HAYAMA
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Ryota IINO
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Hiroyuki NOJI
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akihito YAMAGUCHI
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Kunihiko NISHINO
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Saeki M, Sato T, Furuya D, Yakuwa Y, Sato Y, Kobayashi R, Ono M, Nirasawa S, Tanaka M, Nakafuri H, Nakae M, Shinagawa M, Asanuma K, Yanagihara N, Yokota SI, Takahashi S. Clonality investigation of clinical Escherichia coli isolates by polymerase chain reaction-based open-reading frame typing method. J Infect Chemother 2020; 26:38-42. [DOI: 10.1016/j.jiac.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/14/2019] [Accepted: 06/30/2019] [Indexed: 11/28/2022]
|
3
|
Grushnikov A, Kikuchi K, Matsumoto Y, Kanade T, Yagi Y. Automatic Image Analysis for Rapid Drug Susceptibility Testing. ADVANCED BIOMEDICAL ENGINEERING 2017. [DOI: 10.14326/abe.6.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Andrey Grushnikov
- The Institute of Scientific and Industrial Research, Osaka University
| | - Kazuma Kikuchi
- The Institute of Scientific and Industrial Research, Osaka University
| | - Yoshimi Matsumoto
- The Institute of Scientific and Industrial Research, Osaka University
| | - Takeo Kanade
- The Institute of Scientific and Industrial Research, Osaka University
| | - Yasushi Yagi
- The Institute of Scientific and Industrial Research, Osaka University
| |
Collapse
|
4
|
Matsumoto Y, Sakakihara S, Grushnikov A, Kikuchi K, Noji H, Yamaguchi A, Iino R, Yagi Y, Nishino K. A Microfluidic Channel Method for Rapid Drug-Susceptibility Testing of Pseudomonas aeruginosa. PLoS One 2016; 11:e0148797. [PMID: 26872134 PMCID: PMC4752270 DOI: 10.1371/journal.pone.0148797] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022] Open
Abstract
The recent global increase in the prevalence of antibiotic-resistant bacteria and lack of development of new therapeutic agents emphasize the importance of selecting appropriate antimicrobials for the treatment of infections. However, to date, the development of completely accelerated drug susceptibility testing methods has not been achieved despite the availability of a rapid identification method. We proposed an innovative rapid method for drug susceptibility testing for Pseudomonas aeruginosa that provides results within 3 h. The drug susceptibility testing microfluidic (DSTM) device was prepared using soft lithography. It consisted of five sets of four microfluidic channels sharing one inlet slot, and the four channels are gathered in a small area, permitting simultaneous microscopic observation. Antimicrobials were pre-introduced into each channel and dried before use. Bacterial suspensions in cation-adjusted Mueller-Hinton broth were introduced from the inlet slot and incubated for 3 h. Susceptibilities were microscopically evaluated on the basis of differences in cell numbers and shapes between drug-treated and control cells, using dedicated software. The results of 101 clinically isolated strains of P. aeruginosa obtained using the DSTM method strongly correlated with results obtained using the ordinary microbroth dilution method. Ciprofloxacin, meropenem, ceftazidime, and piperacillin caused elongation in susceptible cells, while meropenem also induced spheroplast and bulge formation. Morphological observation could alternatively be used to determine the susceptibility of P. aeruginosa to these drugs, although amikacin had little effect on cell shape. The rapid determination of bacterial drug susceptibility using the DSTM method could also be applicable to other pathogenic species, and it could easily be introduced into clinical laboratories without the need for expensive instrumentation.
Collapse
Affiliation(s)
- Yoshimi Matsumoto
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
- * E-mail:
| | - Shouichi Sakakihara
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Andrey Grushnikov
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Kazuma Kikuchi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Akihito Yamaguchi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Ryota Iino
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Yasushi Yagi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Kunihiko Nishino
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Kawakami K, Misao H. Framework for controlling infection through isolation precautions in Japan. Nurs Health Sci 2014; 16:31-8. [PMID: 24635895 DOI: 10.1111/nhs.12115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 10/07/2013] [Accepted: 11/06/2013] [Indexed: 01/24/2023]
Abstract
In Japan, nurses certified in infection control face organizational and structural challenges to the implementation of the recommended isolation precautions. In this study, we developed a conceptual framework for the problem-solving process of certified nurses in infection control when implementing appropriate isolation-precaution measures. We conducted a qualitative, descriptive study using directed content analysis. Semistructured interviews were conducted with 40 nurses who had over five years' experience in infection control. Factors assessing the risk of infection in patients were identified, including microorganism characteristics, patient characteristics, and risk of infection to the entire unit. The nurses also assessed the risk of infection in institutions from the following perspectives: organizational culture, infection control system, human resources, environment surrounding the facility, ethical issues, and external factors. Individual characteristics, such as attributes, knowledge, expertise, and job function, were identified as major influencing factors in the problem-solving process. These findings could be useful for newly-certified nurses in infection control and provide recommendations on implementing isolation-precaution measures.
Collapse
Affiliation(s)
- Kazumi Kawakami
- Department of Gerontological Nursing, Juntendo University, Chiba
| | | |
Collapse
|
6
|
Fuse K, Fujimura S, Kikuchi T, Gomi K, Iida Y, Nukiwa T, Watanabe A. Reduction of virulence factor pyocyanin production in multidrug-resistant Pseudomonas aeruginosa. J Infect Chemother 2012; 19:82-8. [PMID: 22865331 DOI: 10.1007/s10156-012-0457-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/09/2012] [Indexed: 11/30/2022]
Abstract
Nosocomial infections caused by metallo-β-lactamase (MBL)-producing multidrug-resistant (MDR) Pseudomonas aeruginosa have become a worldwide problem. Pyocyanin, a representative pigment produced by P. aeruginosa, is the major virulence factor of this organismThe aim of this study was to investigate the pyocyanin-producing ability of MBL-producing MDR P. aeruginosa. A total of 50 clinical isolates of P. aeruginosa, including 20 MDR strains, were collected at 18 general hospitals in Japan. The chromaticity and luminosity produced by pyocyanin in each isolate were measured. The quantity of pyocyanin and the expression of the phzM and phzS genes coding a pyocyanin synthesis enzyme were measured. MDR strains showed a bright yellow-green, while non-MDR strains tended to show a dark blue-green. The quantities of pyocyanin in MBL-producing strains and non-producing strains were 0.015 ± 0.002 and 0.41 ± 0.10 μg, respectively. The expression of the phzM and phzS genes in the MDR strains was 11 and 14 %, respectively, of the expression in the non-MDR strains. When the MBL gene was transduced into P. aeruginosa and it acquired multidrug resistance, it was shown that the pyocyanin-producing ability decreased. The pathogenicity of MBL-producing MDR P. aeruginosa may be lower than that of non-MDR strains. These MBL-producing MDR strains may be less pathogenic than non-MDR strains. This may explain why MDR-P. aeruginosa is unlikely to cause infection but, rather, causes subclinical colonization only.
Collapse
Affiliation(s)
- Katsuhiro Fuse
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Iino R, Nishino K, Noji H, Yamaguchi A, Matsumoto Y. A microfluidic device for simple and rapid evaluation of multidrug efflux pump inhibitors. Front Microbiol 2012; 3:40. [PMID: 22347225 PMCID: PMC3274760 DOI: 10.3389/fmicb.2012.00040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/26/2012] [Indexed: 12/03/2022] Open
Abstract
Recently, multidrug-resistant pathogens have disseminated widely owing essentially to their increased multidrug efflux pump activity. Presently, there is a scarcity of new antibacterial agents, and hence, inhibitors of multidrug efflux pumps belonging to the resistance–nodulation–cell division (RND) family appear useful in the treatment of infections by multidrug-resistant pathogens. Moreover, recent progress in microfabrication technologies has expanded the application of nano/micro-devices to the field of human healthcare, such as the detection of infections and diagnosis of diseases. We developed a microfluidic channel device for a simple and rapid evaluation of bacterial drug efflux activity. By combining the microfluidic device with a fluorogenic compound, fluorescein-di-β-D-galactopyranoside, which is hydrolyzed to a fluorescent dye in the cytoplasm of Escherichia coli, we successfully evaluated the effects of inhibitors on the RND-type multidrug efflux pumps MexAB–OprM and MexXY–OprM from Pseudomonas aeruginosa in E. coli. Our new method successfully detected the MexB-specific inhibitory effect of D13-9001 and revealed an unexpected membrane-permeabilizing effect of Phe-Arg-β-naphthylamide, which has long been used as an efflux pump inhibitor.
Collapse
Affiliation(s)
- Ryota Iino
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
8
|
Risk factors for bacteraemia attributable to Pseudomonas aeruginosa resistant to imipenem, levofloxacin, or gentamicin. J Hosp Infect 2011; 79:267-8. [DOI: 10.1016/j.jhin.2011.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 07/21/2011] [Indexed: 11/17/2022]
|
9
|
Wide dispersion of ST175 clone despite high genetic diversity of carbapenem-nonsusceptible Pseudomonas aeruginosa clinical strains in 16 Spanish hospitals. J Clin Microbiol 2011; 49:2905-10. [PMID: 21697331 DOI: 10.1128/jcm.00753-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During the COMParative Activity of Carbapenems Testing (COMPACT) surveillance study, 448 Pseudomonas aeruginosa clinical isolates were obtained from 16 Spanish hospitals. Nonsusceptibility (EUCAST breakpoints) to imipenem (35%), meropenem (33%), and/or doripenem (33%) was observed with 175 isolates (39%). Simultaneous resistance to these three drugs was observed with 126 of the 175 isolates (72%). Except for colistin, high resistance rates were observed among noncarbapenem antibiotics. Clonal relatedness was investigated by pulsed-field gel electrophoresis (PFGE) with SpeI, discriminating 68 patterns. Multilocus sequence typing (MLST) was performed on 84 isolates representing different PFGE types and all participating hospitals. Thirty-nine sequence types (STs) could be distinguished, and of these, ST175 (48 isolates, 10 hospitals), ST646 (16 isolates, 4 hospitals), ST532 (13 isolates, 3 hospitals), and ST111 (13 isolates, 7 hospitals) were the most frequently encountered. Minimum-spanning tree analysis confirmed a wide dissemination of different clones among participant hospitals, particularly ST175. PFGE pattern comparison within the four most frequent STs revealed that ST175 isolates were relatively uniform, while ST646, ST532, and ST111 isolates were highly diverse, with almost every isolate belonging to a unique pulsotype, even when originating from the same center. The population of carbapenem-nonsusceptible P. aeruginosa isolates from 16 hospitals is highly diverse, with one ST (ST175) representing a highly conserved clone disseminated in 10 of the 16 participant hospitals. This ST175 clone should be added to the list of P. aeruginosa clones at high risk for epidemic spread, such as the Liverpool, Manchester, and Melbourne clones previously found in cystic fibrosis patients and ST235 in the nosocomial setting.
Collapse
|
10
|
Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels. PLoS One 2011; 6:e18547. [PMID: 21533264 PMCID: PMC3075257 DOI: 10.1371/journal.pone.0018547] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/03/2011] [Indexed: 11/19/2022] Open
Abstract
Fluorescein-di-β-d-galactopyranoside (FDG), a fluorogenic compound, is hydrolyzed by β-galactosidase in the cytoplasm of Escherichia coli to produce a fluorescent dye, fluorescein. We found that both FDG and fluorescein were substrates of efflux pumps, and have developed a new method to evaluate efflux-inhibitory activities in E. coli using FDG and a microfluidic channel device. We used E. coli MG1655 wild-type, ΔacrB (ΔB), ΔtolC (ΔC) and ΔacrBΔtolC (ΔBC) harboring plasmids carrying the mexAB-oprM (pABM) or mexXY-oprM (pXYM) genes of Pseudomonas aeruginosa. Two inhibitors, MexB-specific pyridopyrimidine (D13-9001) and non-specific Phe-Arg-β-naphthylamide (PAβN) were evaluated. The effects of inhibitors on pumps were observed using the microfluidic channel device under a fluorescence microscope. AcrAB-TolC and analogous pumps effectively prevented FDG influx in wild-type cells, resulting in no fluorescence. In contrast, ΔB or ΔC easily imported and hydrolyzed FDG to fluorescein, which was exported by residual pumps in ΔB. Consequently, fluorescent medium in ΔB and fluorescent cells of ΔC and ΔBC were observed in the microfluidic channels. D13-9001 substantially increased fluorescent cell number in ΔBC/pABM but not in ΔBC/pXYM. PAβN increased medium fluorescence in all strains, especially in the pump deletion mutants, and caused fluorescein accumulation to disappear in ΔC. The checkerboard method revealed that D13-9001 acts synergistically with aztreonam, ciprofloxacin, and erythromycin only against the MexAB-OprM producer (ΔBC/pABM), and PAβN acts synergistically, especially with erythromycin, in all strains including the pump deletion mutants. The results obtained from PAβN were similar to the results from membrane permeabilizer, polymyxin B or polymyxin B nonapeptide by concentration. The new method clarified that D13-9001 specifically inhibited MexAB-OprM in contrast to PAβN, which appeared to be a substrate of the pumps and permeabilized the membranes in E. coli.
Collapse
|
11
|
Takesue Y, Nakajima K, Ichiki K, Ishihara M, Wada Y, Takahashi Y, Tsuchida T, Ikeuchi H. Impact of a hospital-wide programme of heterogeneous antibiotic use on the development of antibiotic-resistant Gram-negative bacteria. J Hosp Infect 2010; 75:28-32. [DOI: 10.1016/j.jhin.2009.11.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 11/13/2009] [Indexed: 11/29/2022]
|
12
|
UEDA TOYOTOSHI, HARA MASANORI, ODAGAWA IKUMI, SHIGIHARA TAKANORI. Simultaneous Treatment of Washing, Disinfection and Sterilization Using Ultrasonic Levitation, Silver Electrolysis and Ozone Oxidation. Biocontrol Sci 2009; 14:1-12. [DOI: 10.4265/bio.14.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|