1
|
Du L, Wang H, Liu F, Wei Z, Weng C, Tang J, Feng WH. NSP2 Is Important for Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus to Trigger High Fever-Related COX-2-PGE2 Pathway in Pigs. Front Immunol 2021; 12:657071. [PMID: 33995374 PMCID: PMC8118602 DOI: 10.3389/fimmu.2021.657071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
In 2006, atypical porcine reproductive and respiratory syndrome (PRRS) caused by a highly pathogenic PRRSV (HP-PRRSV) strain broke out in China. Atypical PRRS is characterized by extremely high fever and high mortality in pigs of all ages. Prostaglandin E2 (PGE2) derived from arachidonic acid through the activation of the rate-limiting enzyme cyclooxygenase type 1/2 (COX-1/2) plays an important role in fever. Here, we showed that HP-PRRSV infection increased PGE2 production in microglia via COX-2 up-regulation depending on the activation of MEK1-ERK1/2-C/EBPβ signaling pathways. Then, we screened HP-PRRSV proteins and demonstrated that HP-PRRSV nonstructural protein 2 (NSP2) activated MEK1-ERK1/2-C/EBPβ signaling pathways by interacting with 14-3-3ζ to promote COX-2 expression, leading to PGE2 production. Furthermore, we identified that the amino acid residues 500-596 and 658-777 in HP-PRRSV NSP2 were essential to up-regulate COX-2 expression and PGE2 production. Finally, we made mutant HP-PRRS viruses with the deletion of residues 500-596 and/or 658-777, and found out that these viruses had impaired ability to up-regulate COX-2 and PGE2 production in vitro and in vivo. Importantly, pigs infected with the mutant viruses had relieved fever, clinical symptoms, and mortality. These data might help us understand the molecular mechanisms underlying the high fever and provide clues for the development of HP-PRRSV attenuated vaccines.
Collapse
Affiliation(s)
- Li Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Honglei Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zeyu Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Zhang TQ, Kuroda H, Nagano K, Terada S, Gao JQ, Harada K, Hirata K, Tsujino H, Higashisaka K, Matsumoto H, Tsutsumi Y. Development and evaluation of a simultaneous and efficient quantification strategy for final prostanoid metabolites in urine. Prostaglandins Leukot Essent Fatty Acids 2020; 157:102032. [PMID: 31734013 DOI: 10.1016/j.plefa.2019.102032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/19/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022]
Abstract
Prostanoids (PNs) play critical roles in various physiological and pathological processes. Therefore, it is important to understand the alternation of PN expression profiles. However, a simultaneous and efficient quantification system for final PN metabolites in urine has not yet been established. Here, we developed and evaluated a novel method to quantify all final PN metabolites. By purification using a reverse phase solid phase extraction (SPE) column, the matrix effects against the final PGD2, PGE2, and PGF2α metabolites were low, and their accuracies were nearly 100%. The matrix effects against the final PGI2 and TXA2 metabolites were high using reverse phase SPE column purification alone. By applying a tandem SPE method that combined reverse phase and ion exchange SPE columns, the matrix effects decreased so that the accuracy was nearly 100%. To validate the reliability of the method, each final metabolite was quantified from mouse urine to which the PNs (PGD2, PGE2, and PGI2) were intravenously administered. As a result, the amounts of PN metabolites were correlated with those of the PNs administered to the blood in a dose-dependent manner. To validate the method using human samples, the urinary metabolites of Crohn's disease (CD, a PN-related disease) patients and healthy individuals were quantified. All five metabolites were successfully quantified. Only final PGE2 metabolite levels were significantly higher in CD patients than those in healthy individuals, so that the urinary metabolite profiles of CD patients is determined. In conclusion, we developed a novel method to quantify all final PN metabolites simultaneously and efficiently and demonstrated the practicality of the method using human CD patient samples.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirotaka Kuroda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Life Science Business Department, Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto, 604-8511, Japan
| | - Kazuya Nagano
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Soshi Terada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Kazuo Harada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazumasa Hirata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuma Higashisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Matsumoto
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Rogers LM, Anders AP, Doster RS, Gill EA, Gnecco JS, Holley JM, Randis TM, Ratner AJ, Gaddy JA, Osteen K, Aronoff DM. Decidual stromal cell-derived PGE 2 regulates macrophage responses to microbial threat. Am J Reprod Immunol 2018; 80:e13032. [PMID: 30084522 DOI: 10.1111/aji.13032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022] Open
Abstract
PROBLEM Bacterial chorioamnionitis causes adverse pregnancy outcomes, yet host-microbial interactions are not well characterized within gestational membranes. The decidua, the outermost region of the membranes, is a potential point of entry for bacteria ascending from the vagina to cause chorioamnionitis. We sought to determine whether paracrine communication between decidual stromal cells and macrophages shaped immune responses to microbial sensing. METHOD OF STUDY Decidual cell-macrophage interactions were modeled in vitro utilizing decidualized, telomerase-immortalized human endometrial stromal cells (dTHESCs) and phorbol ester-differentiated THP-1 macrophage-like cells. The production of inflammatory mediators in response to LPS was monitored by ELISA for both cell types, while phagocytosis of bacterial pathogens (Escherichia coli and Group B Streptococcus (GBS)) was measured in THP-1 cells or primary human placental macrophages. Diclofenac, a non-selective cyclooxygenase inhibitor, and prostaglandin E2 (PGE2 ) were utilized to interrogate prostaglandins as decidual cell-derived paracrine immunomodulators. A mouse model of ascending chorioamnionitis caused by GBS was utilized to assess the colocalization of bacteria and macrophages in vivo and assess PGE2 production. RESULTS In response to LPS, dTHESC and THP-1 coculture demonstrated enhancement of most inflammatory mediators, but a potent suppression of macrophage TNF-α generation was observed. This appeared to reflect a paracrine-mediated effect of decidual cell-derived PGE2 . In mice with GBS chorioamnionitis, macrophages accumulated at sites of bacterial invasion with increased PGE2 in amniotic fluid, suggesting such paracrine effects might hold relevance in vivo. CONCLUSION These data suggest key roles for decidual stromal cells in modulating tissue responses to microbial threat through release of PGE2 .
Collapse
Affiliation(s)
- Lisa M Rogers
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anjali P Anders
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Ryan S Doster
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Juan S Gnecco
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob M Holley
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tara M Randis
- Department of Pediatrics, New York University School of Medicine, New York, New York.,Department of Microbiology, New York University School of Medicine, New York, New York
| | - Adam J Ratner
- Department of Pediatrics, New York University School of Medicine, New York, New York.,Department of Microbiology, New York University School of Medicine, New York, New York
| | - Jennifer A Gaddy
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Veteran Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee
| | - Kevin Osteen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Veteran Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
4
|
Plessers E, Wyns H, Watteyn A, Pardon B, De Backer P, Croubels S. Characterization of an intravenous lipopolysaccharide inflammation model in calves with respect to the acute-phase response. Vet Immunol Immunopathol 2015; 163:46-56. [DOI: 10.1016/j.vetimm.2014.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/29/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022]
|
5
|
Liu W, Li H, Zhang X, Wen D, Yu F, Yang S, Jia X, Cong B, Ma C. Prostaglandin I2-IP signalling regulates human Th17 and Treg cell differentiation. Prostaglandins Leukot Essent Fatty Acids 2013; 89:335-44. [PMID: 24035274 DOI: 10.1016/j.plefa.2013.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 02/04/2023]
Abstract
Prostaglandin I2 (PGI2) is an important immunoregulatory lipid mediator. In this study, we analysed the effects of the PGI2 analogue (Iloprost) on the differentiation of Th17 cells and Tregs from human naïve CD4(+) T cells. PGI2 receptors (IP) are expressed on human naïve CD4(+) T cells. Via IP binding, the PGI2 analogue decreased the proportion of Tregs and Foxp3 mRNA expression but increased the percentage of Th17 cells, RORC mRNA and IL-17A production. The regulatory effects of Iloprost correlated with elevated intracellular cAMP levels. The effects were mimicked by a cAMP agonist (db-cAMP) but attenuated by a protein kinase A inhibitor (H-89). STAT3 and STAT5 signalling play direct and crucial roles in the development of Th17 and Tregs, respectively. The PGI2 analogue enhanced the activation of STAT3 in response to IL-6, whereas it decreased STAT5 activation in response to IL-2. Moreover, db-cAMP imitated the above effects of Iloprost, which were weakened by H-89. These results demonstrate that the PGI2-IP interaction promoted the phosphorylation of STAT3 and reduced the phosphorylation of STAT5, likely via the upregulation of cAMP-PKA signalling, thus facilitated Th17 differentiation and suppressed Treg differentiation. Together with previous results, these data suggest that prostanoids play an important role in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis.
Collapse
MESH Headings
- Bucladesine/pharmacology
- Cell Differentiation
- Cyclic AMP/antagonists & inhibitors
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases
- Epoprostenol/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation
- Humans
- Iloprost/pharmacology
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Isoquinolines/pharmacology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Phosphorylation/drug effects
- Platelet Aggregation Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction
- Sulfonamides/pharmacology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/cytology
- Th17 Cells/drug effects
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Wenxuan Liu
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Buckner MMC, Antunes LCM, Gill N, Russell SL, Shames SR, Finlay BB. 15-Deoxy-Δ12,14-prostaglandin J2 inhibits macrophage colonization by Salmonella enterica serovar Typhimurium. PLoS One 2013; 8:e69759. [PMID: 23922794 PMCID: PMC3724865 DOI: 10.1371/journal.pone.0069759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/12/2013] [Indexed: 12/02/2022] Open
Abstract
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory downstream product of the cyclooxygenase enzymes. It has been implicated to play a protective role in a variety of inflammatory mediated diseases, including rheumatoid arthritis, neural damage, and myocardial infarctions. Here we show that 15d-PGJ2 also plays a role in Salmonella infection. Salmonella enterica Typhimurium is a Gram-negative facultative intracellular pathogen that is able to survive and replicate inside phagocytic immune cells, allowing for bacterial dissemination to systemic sites. Salmonella species cause a wide range of morbidity and mortality due to gastroenteritis and typhoid fever. Previously we have shown that in mouse models of typhoid fever, Salmonella infection causes a major perturbation in the prostaglandin pathway. Specifically, we saw that 15d-PGJ2 production was significantly increased in both liver and feces. In this work we show that 15d-PGJ2 production is also significantly increased in macrophages infected with Salmonella. Furthermore, we show that the addition of 15d-PGJ2 to Salmonella infected RAW264.7, J774, and bone marrow derived macrophages is sufficient to significantly reduce bacterial colonization. We also show evidence that 15d-PGJ2 is reducing bacterial uptake by macrophages. 15d-PGJ2 reduces the inflammatory response of these infected macrophages, as evidenced by a reduction in the production of cytokines and reactive nitrogen species. The inflammatory response of the macrophage is important for full Salmonella virulence, as it can give the bacteria cues for virulence. The reduction in bacterial colonization is independent of the expression of Salmonella virulence genes SPI1 and SPI2, and is independent of the 15d-PGJ2 ligand PPAR-γ. 15d-PGJ2 also causes an increase in ERK1/2 phosphorylation in infected macrophages. In conclusion, we show here that 15d-PGJ2 mediates the outcome of bacterial infection, a previously unidentified role for this prostaglandin.
Collapse
Affiliation(s)
- Michelle M. C. Buckner
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - L. Caetano M Antunes
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Navkiran Gill
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon L. Russell
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie R. Shames
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
7
|
Toki S, Goleniewska K, Huckabee MM, Zhou W, Newcomb DC, Fitzgerald GA, Lawson WE, Peebles RS. PGI₂ signaling inhibits antigen uptake and increases migration of immature dendritic cells. J Leukoc Biol 2013; 94:77-88. [PMID: 23625201 DOI: 10.1189/jlb.1112559] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PGI₂ signaling through IP inhibits allergen-induced inflammatory responses in mice. We reported previously that PGI₂ analogs decreased proinflammatory cytokine and chemokine production by mature BMDCs. However, whether PGI₂ modulates the function of immature DCs has not been investigated. We hypothesized that PGI2 negatively regulates immature DC function and investigated the effect of PGI2 analogs on immature BMDC antigen uptake and migration in vitro and in vivo. Immature BMDCs were obtained from WT and IPKO mice, both on a C57BL/6 background. The PGI2 analog cicaprost decreased FITC-OVA uptake by immature BMDCs. In addition, cicaprost increased immature BMDC podosome dissolution, pro-MMP-9 production, cell surface CCR7 expression, and chemotactic migration toward CCL19 and CCL21, as well as chemokinesis, in an IP-specific fashion. These in vitro results suggested that cicaprost promotes migration of immature DCs from mucosal surface to draining LNs. This concept was supported by the finding that migration of immature GFP⁺ BMDCs to draining LNs was enhanced by pretreatment with cicaprost. Further, migration of immature lung DCs labeled with PKH26 was enhanced by intranasal cicaprost administration. Our results suggest PGI2-IP signaling increases immature DC migration to the draining LNs and may represent a novel mechanism by which this eicosanoid inhibits immune responses.
Collapse
Affiliation(s)
- Shinji Toki
- Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave., T-1218 MCN, Nashville, TN 37232-2650, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Shimabukuro-Vornhagen A, Draube A, Liebig T, Popov A, Rothe A, von Bergwelt-Baildon M. The properties of human CD40-activated B cells as antigen-presenting cells are not affected by PGE2. Oncol Rep 2012; 29:1061-5. [PMID: 23292511 DOI: 10.3892/or.2012.2215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/09/2012] [Indexed: 11/05/2022] Open
Abstract
Tumor vaccination represents a promising immuno-therapeutic strategy in cancer. However, the inherent ability of many tumors to evade immune responses by suppression of immune cell function represents a major barrier. Prostaglandin E2 (PGE2) has been shown to be a critical tumor-derived immunosuppressive factor. It affects a broad range of immune cells including T cells, macrophages and dendritic cells (DCs). CD40-activated B cells are being studied as a potential alternative to DCs as antigen-presenting cells for immunotherapy. So far, it is not known whether PGE2 affects their antigen presenting capacity. We, therefore, investigated the influence of PGE2 on the phenotype, migratory potential and antigen-presenting function of CD40-activated human B cells. Here, we demonstrate that the immunostimulatory properties of CD40-activated B cells are not affected by PGE2. These results support the use of CD40-activated B cells as cellular adjuvants, especially in settings where PGE2 is present in the tumor microenvironment.
Collapse
Affiliation(s)
- Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology (CII), Department I of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
9
|
PGI2 as a regulator of inflammatory diseases. Mediators Inflamm 2012; 2012:926968. [PMID: 22851816 PMCID: PMC3407649 DOI: 10.1155/2012/926968] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/24/2012] [Indexed: 12/11/2022] Open
Abstract
Prostacyclin, or PGI2, is an end product derived from the sequential metabolism of arachidonic acid via cyclooxygenase and PGI synthase (PGIS). The receptor for PGI2, IP, can be found on a variety of cell types and signaling through this receptor exhibits broad physiological effects. Historically, PGI2 has been understood to play a role in cardiovascular health, specifically having powerful vasodilatory effects via relaxation of smooth muscle and inhibiting of platelet aggregation. For these reasons, PGI2 has a long history of use for the treatment of pulmonary arterial hypertension (PAH). Only recently, its importance as an immunomodulatory agent has been investigated. PGI2 regulates both the innate and adaptive immune systems and its effects are, for the most part, thought to be anti-inflammatory or immunosuppressive in nature, which may have implications for its further clinical use.
Collapse
|
10
|
Gueron G, De Siervi A, Vazquez E. Advanced prostate cancer: reinforcing the strings between inflammation and the metastatic behavior. Prostate Cancer Prostatic Dis 2011; 15:213-21. [PMID: 22183772 DOI: 10.1038/pcan.2011.64] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is currently estimated that inflammatory responses are linked to 15-20% of all deaths from cancer worldwide. Although many studies point to an important role of inflammation in prostate growth, the contribution of inflammation to castration-resistant prostate cancer is not completely understood. The presence of inflammatory mediators in tumor microenvironment raises the question whether genetic events that participate in cancer development and progression are responsible for the inflammatory milieu inside and surrounding tumors. Activated oncogenes, cytokines, chemokines and their receptors, sustained oxidative stress and antioxidant imbalance share the capacity to orchestrate these pro-inflammatory programs; however, the diversity of the inflammatory cell components will determine the final response in the prostate tissue. These observations give rise to the concept that early genetic events generate an inflammatory microenvironment promoting prostate cancer progression and creating a continuous loop that stimulates a more aggressive stage. It is imperative to dissect the molecular pathologic mechanism of inflammation involved in the generation of the castration-resistant phenotype in prostate cancer. Here, we present a hypothesis where molecular signaling triggered by inflammatory mediators may evolve in prostate cancer progression. Thus, treatment of chronic inflammation may represent an important therapeutic target in advanced prostate cancer.
Collapse
Affiliation(s)
- G Gueron
- Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires, Argentina-CONICET
| | | | | |
Collapse
|
11
|
Zimomra ZR, Porterfield VM, Camp RM, Johnson JD. Time-dependent mediators of HPA axis activation following live Escherichia coli. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1648-57. [PMID: 21917906 DOI: 10.1152/ajpregu.00301.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is activated during an immune challenge to liberate energy and modulate immune responses via feedback and regulatory mechanisms. Inflammatory cytokines and prostaglandins are known contributors to HPA activation; however, most previous studies only looked at specific time points following LPS administration. Since whole bacteria have different immune stimulatory properties compared with LPS, the aim of the present studies was to determine whether different immune products contribute to HPA activation at different times following live Escherichia coli challenge. Sprague-Dawley rats were injected intraperitoneally with E. coli (2.5 × 10(7) CFU) and a time course of circulating corticosterone, ACTH, inflammatory cytokines, and PGE(2) was developed. Plasma corticosterone peaked 0.5 h after E. coli and steadily returned to baseline by 4 h. Plasma PGE(2) correlated with the early rise in plasma corticosterone, whereas inflammatory cytokines were not detected until 2 h. Pretreatment with indomethacin, a nonselective cyclooxygenase inhibitor, completely blocked the early rise in plasma corticosterone, but not at 2 h, whereas pretreatment with IL-6 antibodies had no effect on the early rise in corticosterone but attenuated corticosterone at 2 h. Interestingly, indomethacin pretreatment did not completely block the early rise in corticosterone following a higher concentration of E. coli (2.5 × 10(8) CFU). Further studies revealed that only animals receiving indomethacin prior to E. coli displayed elevated plasma and liver cytokines at early time points (0.5 and 1 h), suggesting prostaglandins suppress early inflammatory cytokine production. Overall, these data indicate prostaglandins largely mediate the early rise in plasma corticosterone, while inflammatory cytokines contribute to maintaining levels of corticosterone at later time points.
Collapse
Affiliation(s)
- Z R Zimomra
- Kent State University, Department of Biological Sciences, Kent, Ohio, USA
| | | | | | | |
Collapse
|
12
|
Nakajima S, Honda T, Sakata D, Egawa G, Tanizaki H, Otsuka A, Moniaga CS, Watanabe T, Miyachi Y, Narumiya S, Kabashima K. Prostaglandin I2–IP Signaling Promotes Th1 Differentiation in a Mouse Model of Contact Hypersensitivity. THE JOURNAL OF IMMUNOLOGY 2010; 184:5595-603. [DOI: 10.4049/jimmunol.0903260] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Terada N, Shimizu Y, Kamba T, Inoue T, Maeno A, Kobayashi T, Nakamura E, Kamoto T, Kanaji T, Maruyama T, Mikami Y, Toda Y, Matsuoka T, Okuno Y, Tsujimoto G, Narumiya S, Ogawa O. Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Res 2010; 70:1606-15. [PMID: 20145136 DOI: 10.1158/0008-5472.can-09-2984] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
More effective therapeutic approaches for castration-resistant prostate cancer (CRPC) are urgently needed, thus reinforcing the need to understand how prostate tumors progress to castration resistance. We have established a novel mouse xenograft model of prostate cancer, KUCaP-2, which expresses the wild-type androgen receptor (AR) and which produces the prostate-specific antigen (PSA). In this model, tumors regress soon after castration, but then reproducibly restore their ability to proliferate after 1 to 2 months without AR mutation, mimicking the clinical behavior of CRPC. In the present study, we used this model to identify novel therapeutic targets for CRPC. Evaluating tumor tissues at various stages by gene expression profiling, we discovered that the prostaglandin E receptor EP4 subtype (EP4) was significantly upregulated during progression to castration resistance. Immunohistochemical results of human prostate cancer tissues confirmed that EP4 expression was higher in CRPC compared with hormone-naïve prostate cancer. Ectopic overexpression of EP4 in LNCaP cells (LNCaP-EP4 cells) drove proliferation and PSA production in the absence of androgen supplementation in vitro and in vivo. Androgen-independent proliferation of LNCaP-EP4 cells was suppressed when AR expression was attenuated by RNA interference. Treatment of LNCaP-EP4 cells with a specific EP4 antagonist, ONO-AE3-208, decreased intracellular cyclic AMP levels, suppressed PSA production in vitro, and inhibited castration-resistant growth of LNCaP-EP4 or KUCaP-2 tumors in vivo. Our findings reveal that EP4 overexpression, via AR activation, supports an important mechanism for castration-resistant progression of prostate cancer. Furthermore, they prompt further evaluation of EP4 antagonists as a novel therapeutic modality to treat CRPC.
Collapse
Affiliation(s)
- Naoki Terada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ichikawa A, Sugimoto Y, Tanaka S. Molecular biology of histidine decarboxylase and prostaglandin receptors. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:848-66. [PMID: 20948178 PMCID: PMC3037517 DOI: 10.2183/pjab.86.848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Histamine and prostaglandins (PGs) play a variety of physiological roles as autacoids, which function in the vicinity of their sources and maintain local homeostasis in the body. They stimulate target cells by acting on their specific receptors, which are coupled to trimeric G proteins. For the precise understanding of the physiological roles of histamine and PGs, it is necessary to clarify the molecular mechanisms involved in their synthesis as well as their receptor-mediated responses. We cloned the cDNAs for mouse L-histidine decarboxylase (HDC) and 6 mouse prostanoid receptors (4 PGE(2) receptors, PGF receptor, and PGI receptor). We then characterized the expression patterns and functions of these genes. Furthermore, we established gene-targeted mouse strains for HDC and PG receptors to explore the novel pathophysiological roles of histamine and PGs. We have here summarized our research, which should contribute to progress in the molecular biology of HDC and PG receptors.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- DNA, Complementary/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Histamine/chemistry
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/metabolism
- Homeostasis
- Humans
- Mice
- Models, Biological
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
Collapse
Affiliation(s)
- Atsushi Ichikawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
15
|
Aronoff DM, Lewis C, Serezani CH, Eaton KA, Goel D, Phipps JC, Peters-Golden M, Mancuso P. E-prostanoid 3 receptor deletion improves pulmonary host defense and protects mice from death in severe Streptococcus pneumoniae infection. THE JOURNAL OF IMMUNOLOGY 2009; 183:2642-9. [PMID: 19635910 DOI: 10.4049/jimmunol.0900129] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prostaglandins (PGs) are potent lipid mediators that are produced during infections and whose synthesis and signaling networks present potential pharmacologic targets for immunomodulation. PGE(2) acts through the ligation of four distinct G protein-coupled receptors, E-prostanoid (EP) 1-4. Previous in vitro and in vivo studies demonstrated that the activation of the G(alphas)-coupled EP2 and EP4 receptors suppresses inflammatory responses to microbial pathogens through cAMP-dependent signaling cascades. Although it is speculated that PGE(2) signaling via the G(alphai)-coupled EP3 receptor might counteract EP2/EP4 immunosuppression in the context of bacterial infection (or severe inflammation), this has not previously been tested in vivo. To address this, we infected wild-type (EP3(+/+)) and EP3(-/-) mice with the important respiratory pathogen Streptococcus pneumoniae or injected mice i.p. with LPS. Unexpectedly, we observed that EP3(-/-) mice were protected from mortality after infection or LPS. The enhanced survival observed in the infected EP3(-/-) mice correlated with enhanced pulmonary clearance of bacteria; reduced accumulation of lung neutrophils; lower numbers of circulating blood leukocytes; and an impaired febrile response to infection. In vitro studies revealed improved alveolar macrophage phagocytic and bactericidal capacities in EP3(-/-) cells that were associated with an increased capacity to generate NO in response to immune stimulation. Our studies underscore the complex nature of PGE(2) immunomodulation in the context of host-microbial interactions in the lung. Pharmacological targeting of the PGE(2)-EP3 axis represents a novel area warranting greater investigative interest in the prevention and/or treatment of infectious diseases.
Collapse
Affiliation(s)
- David M Aronoff
- Divisions of Infectious Diseases,University of Michigan Health System, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|