1
|
Leite EL, Oliveira AFDE, Carmo FLRDO, Berkova N, Barh D, Ghosh P, Azevedo V. Bacteriocins as an alternative in the treatment of infections by Staphylococcus aureus. AN ACAD BRAS CIENC 2020; 92:e20201216. [PMID: 33084762 DOI: 10.1590/0001-3765202020201216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a highly versatile Gram-positive bacterium that is carried asymptomatically by up to 30% of healthy people, while being a major cause of healthcare-associated infections, making it a worldwide problem in clinical medicine. The adaptive evolution of S. aureus strains is demonstrated by its remarkable capacity to promptly develop high resistance to multiple antibiotics, thus limiting treatment choice. Nowadays, there is a continuous demand for an alternative to the use of antibiotics for S. aureus infections and a strategy to control the spread or to kill phylogenetically related strains. In this scenario, bacteriocins fit as with a promising and interesting alternative. These molecules are produced by a range of bacteria, defined as ribosomally synthesized peptides with bacteriostatic or bactericidal activity against a wide range of pathogens. This work reviews ascertained the main antibiotic-resistance mechanisms of S. aureus strains and the current, informative content concerning the applicability of the use of bacteriocins overlapping the use of conventional antibiotics in the context of S. aureus infections. Besides, we highlight the possible application of these biomolecules on an industrial scale in future work.
Collapse
Affiliation(s)
- Elma L Leite
- Institut National de la Recherche Agronomique (INRA), 65 Rue de Saint-Brieuc, 35000 Rennes, France.,Departamento de Genética, Ecologia e Evolução, ICB/UFMG, Av. Antonio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Alberto F DE Oliveira
- Institut National de la Recherche Agronomique (INRA), 65 Rue de Saint-Brieuc, 35000 Rennes, France
| | - Fillipe L R DO Carmo
- Departamento de Genética, Ecologia e Evolução, ICB/UFMG, Av. Antonio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Nadia Berkova
- Institut National de la Recherche Agronomique (INRA), 65 Rue de Saint-Brieuc, 35000 Rennes, France
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, 721172 West Bengal, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA-23284, USA
| | - Vasco Azevedo
- Departamento de Genética, Ecologia e Evolução, ICB/UFMG, Av. Antonio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Pham TDM, Ziora ZM, Blaskovich MAT. Quinolone antibiotics. MEDCHEMCOMM 2019; 10:1719-1739. [PMID: 31803393 PMCID: PMC6836748 DOI: 10.1039/c9md00120d] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022]
Abstract
The quinolone antibiotics arose in the early 1960s, with the first examples possessing a narrow-spectrum of activity with unfavorable pharmacokinetic properties. Over time, the development of new quinolone antibiotics has led to improved analogues with an expanded spectrum and high efficacy. Nowadays, quinolones are widely used for treating a variety of infections. Quinolones are broad-spectrum antibiotics that are active against both Gram-positive and Gram-negative bacteria, including mycobacteria, and anaerobes. They exert their actions by inhibiting bacterial nucleic acid synthesis through disrupting the enzymes topoisomerase IV and DNA gyrase, and by causing breakage of bacterial chromosomes. However, bacteria have acquired resistance to quinolones, similar to other antibacterial agents, due to the overuse of these drugs. Mechanisms contributing to quinolone resistance are mediated by chromosomal mutations and/or plasmid gene uptake that alter the topoisomerase targets, modify the quinolone, and/or reduce drug accumulation by either decreased uptake or increased efflux. This review discusses the development of this class of antibiotics in terms of potency, pharmacokinetics and toxicity, along with the resistance mechanisms which reduce the quinolones' activity against pathogens. Potential strategies for future generations of quinolone antibiotics with enhanced activity against resistant strains are suggested.
Collapse
Affiliation(s)
- Thu D M Pham
- School of Chemistry & Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Zyta M Ziora
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| |
Collapse
|
3
|
Chauhan D, Hati S, Priyadarshini R, Sen S. Transcriptome analysis predicts mode of action of benzimidazole molecules against
Staphylococcus aureus
UAMS‐1. Drug Dev Res 2019; 80:490-503. [DOI: 10.1002/ddr.21523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/23/2019] [Accepted: 01/26/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Deepika Chauhan
- Department of Life Science, School of Natural SciencesShiv Nadar University Dadri Uttar Pradesh India
| | - Santanu Hati
- Department of Chemistry, School of Natural SciencesShiv Nadar University Dadri Uttar Pradesh India
- Department of Medicinal Chemistry, College of PharmacyUniversity of Florida Gainesville Florida
| | - Richa Priyadarshini
- Department of Life Science, School of Natural SciencesShiv Nadar University Dadri Uttar Pradesh India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural SciencesShiv Nadar University Dadri Uttar Pradesh India
- Department of ChemistrySRM University Amaravati Andhra Pradesh India
| |
Collapse
|
4
|
Polyhexamethylene Biguanide and Nadifloxacin Self-Assembled Nanoparticles: Antimicrobial Effects against Intracellular Methicillin-Resistant Staphylococcus aureus. Polymers (Basel) 2018; 10:polym10050521. [PMID: 30966555 PMCID: PMC6415416 DOI: 10.3390/polym10050521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/29/2018] [Accepted: 05/09/2018] [Indexed: 01/20/2023] Open
Abstract
The treatment of skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus (MRSA) remains a challenge, partly due to localization of the bacteria inside the host’s cells, where antimicrobial penetration and efficacy is limited. We formulated the cationic polymer polyhexamethylene biguanide (PHMB) with the topical antibiotic nadifloxacin and tested the activities against intracellular MRSA in infected keratinocytes. The PHMB/nadifloxacin nanoparticles displayed a size of 291.3 ± 89.6 nm, polydispersity index of 0.35 ± 0.04, zeta potential of +20.2 ± 4.8 mV, and drug encapsulation efficiency of 58.25 ± 3.4%. The nanoparticles killed intracellular MRSA, and relative to free polymer or drugs used separately or together, the nanoparticles displayed reduced toxicity and improved host cell recovery. Together, these findings show that PHMB/nadifloxacin nanoparticles are effective against intracellular bacteria and could be further developed for the treatment of skin and soft tissue infections.
Collapse
|
5
|
Jia W, Wang J, Xu H, Li G. Resistance of Stenotrophomonas maltophilia to Fluoroquinolones: Prevalence in a University Hospital and Possible Mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:5177-95. [PMID: 25985315 PMCID: PMC4454961 DOI: 10.3390/ijerph120505177] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/04/2015] [Indexed: 12/23/2022]
Abstract
Objective: The purpose of this study was to investigate the clinical distribution and genotyping of Stenotrophomonas maltophilia, its resistance to antimicrobial agents, and the possible mechanisms of this drug resistance. Methods: S. maltophilia isolates were collected from clinical specimens in a university hospital in Northwestern China during the period between 2010 and 2012, and were identified to the species level with a fully automated microbiological system. Antimicrobial susceptibility testing was performed for S. maltophilia with the Kirby-Bauer disc diffusion method. The minimal inhibitory concentrations (MICs) of norfloxacin, ofloxacin, chloramphenicol, minocycline, ceftazidime, levofloxacin and ciprofloxacin against S. maltophilia were assessed using the agar dilution method, and changes in the MIC of norfloxacin, ciprofloxacin and ofloxacin were observed after the addition of reserpine, an efflux pump inhibitor. Fluoroquinolone resistance genes were detected in S. maltophilia using a polymerase chain reaction (PCR) assay, and the expression of efflux pump smeD and smeF genes was determined using a quantitative fluorescent (QF)-PCR assay. Pulsed-field gel electrophoresis (PFGE) was employed to genotype identified S. maltophilia isolates. Results: A total of 426 S. maltophilia strains were isolated from the university hospital from 2010 to 2012, consisting of 10.1% of total non-fermentative bacteria. The prevalence of norfloxacin, ciprofloxacin and ofloxacin resistance was 32.4%, 21.9% and 13.2% in the 114 S. maltophilia isolates collected from 2012, respectively. Following reserpine treatment, 19 S. maltophilia isolates positive for efflux pump were identified, and high expression of smeD and smeF genes was detected in two resistant isolates. gyrA, parC, smeD, smeE and smeF genes were detected in all 114 S. maltophilia isolates, while smqnr gene was found in 25.4% of total isolates. Glu-Lys mutation (GAA-AAA) was detected at the 151th amino acid of the gyrA gene, while Gly-Arg mutation (GGC-CGC) was found at the 37th amino acid of the parC gene. However, no significant difference was observed in the prevalence of gyrA or parC mutation between fluoroquinolone-resistant and -susceptible isolates (p> 0.05). The smqnr gene showed 92% to 99% heterogenicity among the 14 S. maltophilia clinical isolates. PFGE of 29 smqnr gene-positive S. maltophilia clinical isolates revealed 25 PFGE genotypes and 28 subgenotypes. Conclusions: Monitoring the clinical distribution and antimicrobial resistance of S. maltophilia is of great significance for the clinical therapy of bacterial infections. Reserpine is effective to inhibit the active efflux of norfloxacin, ciprofloxacin and ofloxacin on S. maltophilia and reduce MIC of fluoroquinolones against the bacteria. The expression of efflux pump smeD and smeF genes correlates with the resistance of S. maltophilia to fluoroquinolones.
Collapse
Affiliation(s)
- Wei Jia
- Medical Experimental Center, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan City, Ningxia Hui Autonomous Region 750004, China.
| | - Jiayuan Wang
- School of Laboratory Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan City, Ningxia Hui Autonomous Region 750004, China.
| | - Haotong Xu
- School of Laboratory Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan City, Ningxia Hui Autonomous Region 750004, China.
| | - Gang Li
- Medical Experimental Center, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan City, Ningxia Hui Autonomous Region 750004, China.
| |
Collapse
|
6
|
Narayanan V, Motlekar S, Kadhe G, Bhagat S. Efficacy and safety of nadifloxacin for bacterial skin infections: results from clinical and post-marketing studies. Dermatol Ther (Heidelb) 2014; 4:233-48. [PMID: 25212256 PMCID: PMC4257952 DOI: 10.1007/s13555-014-0062-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 01/31/2023] Open
Abstract
Introduction Skin and soft tissue infections involve microbial invasion of the skin and underlying soft tissues and are estimated to affect 7–10% of hospitalized patients worldwide. Nadifloxacin, a topical fluoroquinolone, has been shown to be effective against aerobic Gram-negative, Gram-positive (including MRSA and coagulase-negative staphylococci), and anaerobic bacteria. However, there is paucity of data comparing efficacy and safety of 1% nadifloxacin with other anti-bacterials for skin infections in Indian patients. Methods This article presents the results of one post-marketing surveillance (PMS) and three randomized, open, non-blinded, multi-centric clinical studies that compared nadifloxacin with mupirocin and framycetin, and nadifloxacin with fusidic acid. Patients in India, aged from 1 to 65 years old, suffering from mild to moderate bacterial skin infections including impetigo, secondarily infected wounds, folliculitis, infected atopic dermatitis, and furunculosis were randomly allocated to three treatment groups within the studies. Efficacy was assessed by the evaluation of symptoms of erythema, exudation, swelling, pruritus, crusting, pain and tenderness in all the studies. Results A total of 272 subjects were enrolled in the study and subjects were randomly assigned to one of the three treatment groups; 92 in the nadifloxacin group, 90 in the mupirocin group, and 90 in the framycetin group. A significant reduction in the mean scores for bacterial infection symptoms in the nadifloxacin groups was observed when compared to mupirocin, framycetin and fusidic acid groups. Both physician and patients rated nadifloxacin as excellent (complete remission of symptoms) on a 4-point scale in the studies. No adverse events (AEs) were reported in the clinical studies. In the PMS, only two patients (of 329, 0.6%) reported AEs including burning and itching, one in each patient that had resolved at the time of reporting. Conclusion Nadifloxacin, a fluoroquinolone, is a new alternative topical agent in the treatment of bacterial skin infection with minimal AEs. Electronic supplementary material The online version of this article (doi:10.1007/s13555-014-0062-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Varsha Narayanan
- Wockhardt Ltd., Wockhardt Towers, Bandra Kurla Complex, Mumbai, 400051 India
| | - Salman Motlekar
- Wockhardt Ltd., Wockhardt Towers, Bandra Kurla Complex, Mumbai, 400051 India
| | - Ganesh Kadhe
- Wockhardt Ltd., Wockhardt Towers, Bandra Kurla Complex, Mumbai, 400051 India
| | - Seema Bhagat
- Wockhardt Ltd., Wockhardt Towers, Bandra Kurla Complex, Mumbai, 400051 India
| |
Collapse
|
7
|
Nenoff P. Acne vulgaris and bacterial skin infections: review of the topical quinolone nadifloxacin. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.5.643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Kobayashi M, Nakagawa T, Fukamachi K, Nakamura M, Tokura Y. Efficacy of combined topical treatment of acne vulgaris with adapalene and nadifloxacin: a randomized study. J Dermatol 2011; 38:1163-6. [PMID: 22007904 DOI: 10.1111/j.1346-8138.2011.01280.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Topical retinoid and antibiotic combination therapy is an integral part of acne treatment and is considered the appropriate first-line therapy according to the Japanese guideline for moderate and severe acne. In this combination, clindamycin or doxycycline are mostly used as antibiotics, but there have been no reports on the effectiveness of nadifloxacin, a widely used antibiotic in Japan and European countries for acne, in combination with topical retinoid. To confirm the efficacy and safety of adapalene gel and nadifloxacin cream in the treatment of Japanese patients with acne vulgaris, a total of 50 patients were randomized to the two groups, the combination therapy and the adapalene monotherapy, and each therapy was tested for 8 weeks. The percentage reduction in the number of inflammatory acne lesions was evaluated and the safety was monitored through adverse events. The combination of adapalene gel and nadifloxacin cream produced a significantly higher reduction in the inflammatory lesions at 2 weeks (P = 0.047) and at 8 weeks (P = 0.011) after the starting than did adapalene gel monotherapy. The combination did not elevate the side effects of erythema and scale scores, but rather significantly depressed erythema at 1 week. This study showed the efficacy and safety of the combination therapy of nadifloxacin cream with adapalene gel for the inflammatory acne.
Collapse
Affiliation(s)
- Miwa Kobayashi
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | |
Collapse
|
9
|
In vitro activity of nadifloxacin against several Gram-positive bacteria and analysis of the possible evolution of resistance after 2 years of use in Germany. Int J Antimicrob Agents 2009; 33:272-5. [DOI: 10.1016/j.ijantimicag.2008.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 11/24/2022]
|
10
|
Jacobs MR, Appelbaum PC. Nadifloxacin: a quinolone for topical treatment of skin infections and potential for systemic use of its active isomer, WCK 771. Expert Opin Pharmacother 2006; 7:1957-66. [PMID: 17020421 DOI: 10.1517/14656566.7.14.1957] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nadifloxacin is a potent, broad-spectrum, quinolone agent approved for topical use in acne vulgaris and skin infections in Japan. As exposure of pathogenic and colonising bacteria to antibiotics results in drug resistance, it is not desirable to use an important, broad-spectrum antibiotic, which belongs to a class of agents widely used systemically to treat a wide variety of infections, as a topically applied preparation. On this basis, nadifloxacin is not a good option for topical treatment of acne when other effective non-antibiotic treatments are available. Nadifloxacin has potential as a topical agent for short-term treatment of skin infections. The arginine salt of its (-)-(S)-isomer is being developed as a parenteral agent based on its potency against methicillin and quinolone-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Michael R Jacobs
- Department of Pathology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
11
|
Bhagwat SS, Mundkur LA, Gupte SV, Patel MV, Khorakiwala HF. The anti-methicillin-resistant Staphylococcus aureus quinolone WCK 771 has potent activity against sequentially selected mutants, has a narrow mutant selection window against quinolone-resistant Staphylococcus aureus, and preferentially targets DNA gyrase. Antimicrob Agents Chemother 2006; 50:3568-79. [PMID: 16940059 PMCID: PMC1635177 DOI: 10.1128/aac.00641-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WCK 771 is a broad-spectrum fluoroquinolone with enhanced activity against quinolone-resistant staphylococci. To understand the impact of the target-level interactions of WCK 771 on its antistaphylococcal pharmacodynamic properties, we determined the MICs for genetically defined mutants and studied the mutant prevention concentrations (MPCs), the frequency of mutation, and the cidality against the wild type and double mutants. There was a twofold increase in the MICs of WCK 771 for single gyrA mutants, indicating that DNA gyrase is its primary target. All first- and second-step mutants selected by WCK 771 revealed gyrA and grlA mutations, respectively. The MICs of WCK 771 and clinafloxacin were found to be superior to those of other quinolones against strains with double and triple mutations. WCK 771 was also cidal for high-density double mutants at low concentrations. WCK 771 and clinafloxacin showed narrow mutant selection windows compared to those of the other quinolones. Against a panel of 50 high-level quinolone-resistant clinical isolates of staphylococci (ciprofloxacin MIC > or = 16 microg/ml), the WCK 771 MPCs were < or =2 microg/ml for 68% of the strains and < or =4 microg/ml for 28% of the strains. Our results demonstrate that gyrA is the primary target of WCK 771 and that it has pharmacodynamic properties remarkably different from those of quinolones with dual targets (garenoxacin and moxifloxacin) and topoisomerase IV-specific quinolones (trovafloxacin). WCK 771 displayed an activity profile comparable to that of clinafloxacin, a dual-acting quinolone with a high affinity to DNA gyrase. Overall, the findings signify the key role of DNA gyrase in determining the optimal antistaphylococcal features of quinolones.
Collapse
Affiliation(s)
- Sachin S Bhagwat
- Wockhardt Research Centre, D-4, Chikalthana, MIDC Area, 431210, Aurangabad (MS), India
| | | | | | | | | |
Collapse
|
12
|
Abstract
It is well established that multidrug-resistance efflux pumps encoded by bacteria can confer clinically relevant resistance to antibiotics. It is now understood that these efflux pumps also have a physiological role(s). They can confer resistance to natural substances produced by the host, including bile, hormones and host-defence molecules. In addition, some efflux pumps of the resistance nodulation division (RND) family have been shown to have a role in the colonization and the persistence of bacteria in the host. Here, I present the accumulating evidence that multidrug-resistance efflux pumps have roles in bacterial pathogenicity and propose that these pumps therefore have greater clinical relevance than is usually attributed to them.
Collapse
Affiliation(s)
- Laura J V Piddock
- Antimicrobial Agents Research Group, Division of Immunity and Infection, The Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
13
|
Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19:382-402. [PMID: 16614254 PMCID: PMC1471989 DOI: 10.1128/cmr.19.2.382-402.2006] [Citation(s) in RCA: 758] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed.
Collapse
Affiliation(s)
- Laura J V Piddock
- Antimicrobial Agents Research Group, Division of Immunity and Infection, The Medical School, University of Birmingham, Birmingham, United Kingdom, B15 2TT.
| |
Collapse
|
14
|
Abstract
Quinolones are one of the largest classes of antimicrobial agents used worldwide. This review considers the quinolones that are available currently and used widely in Europe (norfoxacin, ciprofloxacin, ofloxacin, levofloxacin and moxifloxacin) within their historical perspective, while trying to position them in the context of recent and possible future advances based on an understanding of: (1) their chemical structures and how these impact on activity and toxicity; (2) resistance mechanisms (mutations in target genes, efflux pumps); (3) their pharmacodynamic properties (AUC/MIC and Cmax/MIC ratios; mutant prevention concentration and mutant selection window); and (4) epidemiological considerations (risk of emergence of resistance, clonal spread). Their main indications are examined in relation to their advantages and drawbacks. Overall, it is concluded that these important agents should be used in an educated fashion, based on a careful balance between their ease of use and efficacy vs. the risk of emerging resistance and toxicity. However, there is now substantial evidence to support use of the most potent drug at the appropriate dose whenever this is required.
Collapse
Affiliation(s)
- F Van Bambeke
- Unit of Cellular and Molecular Pharmacology, Catholic University of Louvain, Brussels.
| | | | | | | |
Collapse
|
15
|
de Souza NJ, Gupte SV, Deshpande PK, Desai VN, Bhawsar SB, Yeole RD, Shukla MC, Strahilevitz J, Hooper DC, Bozdogan B, Appelbaum PC, Jacobs MR, Shetty N, Patel MV, Jha R, Khorakiwala HF. A Chiral Benzoquinolizine-2-carboxylic Acid Arginine Salt Active against Vancomycin-Resistant Staphylococcus aureus. J Med Chem 2005; 48:5232-42. [PMID: 16078842 DOI: 10.1021/jm050035f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is an urgent medical need for novel antibacterial agents to treat hospital infections, specially those caused by multidrug-resistant Gram-positive pathogens. The need may also be fulfilled by either exploring antibacterial agents having new mechanism of action or expanding known classes of antibacterial drugs. The paper describes a new chemical entity, compound 21, derived from hitherto little known "floxacin". The choice of the entity was made from a series of synthesized prodrugs and salts of the active chiral benzoquinolizine carboxylic acid, S-(-)-nadifloxacin. The chemistry, physicochemical characteristics, and essential bioprofile of 21 qualifies it for serious consideration as a novel drug entity against hospital infections of multi-drug-resistant Staphylococcus aureus, and its progress up to clinical phase I trials in humans is described.
Collapse
Affiliation(s)
- Noel J de Souza
- Wockhardt Limited, Wockhardt Research Centre, D-4, MIDC, Chikalthana, Aurangabad-431 210, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Bacterial resistance to quinolones/fluoroquinolones has emerged rapidly and such resistance has traditionally been attributed to the chromosomally mediated mechanisms that alter the quinolone targets (i.e. DNA gyrase and topoisomerase IV) and/or overproduce multidrug resistance efflux pumps. However, the discovery of the plasmid-borne quinolone resistance determinant, named qnr, has substantially broadened our horizon on the molecular mechanisms of quinolone resistance. Several recent reports of Qnr or its homologues encoded by transferable plasmids in Gram-negative bacteria isolated worldwide highlight the significance of the emerging plasmid-mediated mechanism(s). This also alerts us to the potential rapid dissemination of quinolone resistance determinants. Qnr belongs to the pentapeptide repeat family and protects DNA gyrase from the action of quinolone agents including the newer fluoroquinolones. This protection interplays with chromosomal mechanisms to raise significantly the resistance levels. The qnr-bearing strains generate quinolone-resistant mutants at a much higher frequency than those qnr-free strains. Furthermore, the qnr-plasmids are integron-associated and carry multiple resistance determinants providing resistance to several classes of antimicrobials including beta-lactams and aminoglycosides. The high quinolone resistance rates in Escherichia coli are used to address issues of quinolone resistance, and possible strategies for minimising quinolone resistance are discussed.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| |
Collapse
|
17
|
Abstract
Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
18
|
Patel MV, De Souza NJ, Gupte SV, Jafri MA, Bhagwat SS, Chugh Y, Khorakiwala HF, Jacobs MR, Appelbaum PC. Antistaphylococcal activity of WCK 771, a tricyclic fluoroquinolone, in animal infection models. Antimicrob Agents Chemother 2005; 48:4754-61. [PMID: 15561853 PMCID: PMC529196 DOI: 10.1128/aac.48.12.4754-4761.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WCK 771, the arginine salt of S-(-)-nadifloxacin, was evaluated in animal models of staphylococcal infection and in vitro. For 302 methicillin-susceptible strains the MIC at which 50% of isolates are inhibited (MIC50) and the MIC90 of WCK 771 were 0.03 and 0.03 microg/ml, respectively, and for 198 methicillin-resistant strains the MIC50 and the MIC90 were 0.5 and 1.0 microg/ml, respectively. All methicillin-susceptible staphylococci were quinolone susceptible, and almost all methicillin-resistant staphylococci were quinolone resistant. WCK 771 was more potent than moxifloxacin, trovafloxacin, levofloxacin, and ciprofloxacin and had potency comparable to that of clinafloxacin. Only WCK 771 and clinafloxacin demonstrated strong potencies against vancomycin-intermediate Staphylococcus aureus strains (MICs = 1 microg/ml). WCK 771 is not a substrate of the NorA pump, as evident from the lack of an effect of reserpine on the MICs and similar protective doses against infections caused by efflux-positive and -negative staphylococci. WCK 771 was effective by both the oral and the subcutaneous routes in mice infected intraperitoneally with quinolone-susceptible methicillin-susceptible S. aureus (MSSA) strains. For infections caused by quinolone-resistant methicillin-resistant S. aureus (MRSA) strains, the activity of WCK 771 administered subcutaneously was superior to those of trovafloxacin and sparfloxacin, with a 50% effective dose range of 27.8 to 46.8 mg/kg of body weight. The activity of WCK 771 was superior to those of moxifloxacin, vancomycin, and linezolid in a mouse cellulitis model of infection caused by one MSSA and two MRSA strains, with effective doses of 2.5 and 5 mg/kg for the MSSA strain and 10-fold higher effective doses for MRSA strains. WCK 771, like vancomycin and linezolid, eradicated MRSA from mouse liver, spleen, kidney, and lung when it was administered subcutaneously at a dose of 50 mg/kg for four doses. These studies have demonstrated the effectiveness of WCK 771, administered orally and parenterally, for the treatment of diverse staphylococcal infections in mice, including those caused by quinolone-resistant strains.
Collapse
|
19
|
Jacobs MR, Bajaksouzian S, Windau A, Appelbaum PC, Patel MV, Gupte SV, Bhagwat SS, De Souza NJ, Khorakiwala HF. In vitro activity of the new quinolone WCK 771 against staphylococci. Antimicrob Agents Chemother 2004; 48:3338-42. [PMID: 15328094 PMCID: PMC514757 DOI: 10.1128/aac.48.9.3338-3342.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of WCK 771, an experimental quinolone developed to overcome quinolone resistance in staphylococci and other bacteria, was determined against quinolone-susceptible and -resistant Staphylococcus aureus and S. epidermidis. WCK 771 MICs for 50 and 90% of the strains tested (MIC(50) and MIC(90), respectively) were 0.008 and 0.015 microg/ml for S. aureus (n = 43) and 0.015 and 0.03 microg/ml for S. epidermidis (n = 44) for quinolone-susceptible isolates, compared to ciprofloxacin values of 0.12 and 0.25 microg/ml and 0.25 and 0.5 microg/ml, respectively. Values for levofloxacin were 0.12 and 0.25 microg/ml and 0.12 and 0.25 microg/ml, those for clinafloxacin were 0.015 and 0.03 microg/ml and 0.015 and 0.03 microg/ml, those for moxifloxacin were 0.03 and 0.06 microg/ml and 0.06 and 0.12 microg/ml, and those for gatifloxacin were 0.06 and 0.12 microg/ml and 0.12 and 0.25 microg/ml, respectively. The WCK 771 MIC(50) and MIC(90), respectively, were 0.5 and 1 microg/ml for both species of staphylococci (n = 73 for S. aureus, n = 70 for S. epidermidis) for isolates highly resistant to ciprofloxacin (MIC(50) and MIC(90), >32 and >32 microg/ml, respectively). Values for levofloxacin were 8 and 32 microg/ml and 8 and 32 microg/ml, those for clinafloxacin were 1 and 2 microg/ml and 0.5 and 2 microg/ml, those for moxifloxacin 4 and >4 microg/ml and 4 and >4 microg/ml, and those for gatifloxacin were 4 and >4 microg/ml and 2 and >4 microg/ml, respectively. WCK 771 and clinafloxacin demonstrated MICs of 1 microg/ml against three vancomycin-intermediate strains. WCK 771 showed concentration-independent killing for up to 24 h at 2, 4, and 8 times the MICs against quinolone-resistant staphylococci and was also bactericidal after 8 h for high-density inocula (10(8) CFU/ml) of quinolone-resistant strains at 5 microg/ml, whereas moxifloxacin at 7.5 microg/ml was bacteriostatic. WCK 771 was not a substrate of the NorA efflux pump as evident from the similar MICs against both an efflux-positive and an efflux-negative strain. Overall, WCK 771 was the most potent quinolone tested against the staphylococci tested, regardless of quinolone susceptibility.
Collapse
Affiliation(s)
- Michael R Jacobs
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|