1
|
Khafaga AF, Elewa YHA, Atta MS, Noreldin AE. Aging-Related Functional and Structural Changes in Renal Tissues: Lesson from a Camel Model. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-13. [PMID: 33750511 DOI: 10.1017/s1431927621000210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Renal aging is a progressive, physiological, and anatomical change that naturally occurs in all animal species. To date, no information is available concerning the aging-related structural and functional changes in camel kidneys. A total of 25 healthy male camels (14 aged 4–6 years and 11 aged 18–22 years) were included in this study. After the camels were slaughtered, samples were collected from all the camels’ kidneys and prepared for histopathological, immunohistochemical, and gene expression evaluations. The most striking observation was the significant decline in the immunohistochemical abundance of podocin and the significant upregulation of smoothening in the aging camels’ kidneys. However, the nonsignificant changes have reported for nephrin, calbindin, autophagy 5 (ATG5), aquaporin 1, and toll-like receptor 9. Furthermore, the mRNA expressions of sirtuin 1, superoxide dismutase 1, superoxide dismutase 2, peroxisome proliferator-activated receptor alpha, B-cell lymphoma 2 (Bcl-2), and erythropoietin were significantly decreased in the aging camels’ kidneys. While the significant upregulation of Bcl-2-associated X protein and the nonsignificant increase in ATG5 expression levels were reported in the aging camels’ kidneys. The present findings provide better understanding of the complex events and initiating factors of aging, allowing for the development of a future therapeutic strategy to preserve adequate renal function throughout life.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Pathology Department, Faculty of Veterinary Medicine, Alexandria University, Edfina22758, Egypt
| | - Yaser H A Elewa
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig44519, Egypt
| | - Mustafa S Atta
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh33516, Egypt
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour22511, Egypt
| |
Collapse
|
2
|
Bensaada I, Robin B, Perez J, Salemkour Y, Chipont A, Camus M, Lemoine M, Guyonnet L, Lazareth H, Letavernier E, Hénique C, Tharaux PL, Lenoir O. Calpastatin prevents Angiotensin II-mediated podocyte injury through maintenance of autophagy. Kidney Int 2021; 100:90-106. [PMID: 33675847 DOI: 10.1016/j.kint.2021.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
The strong predictive value of proteinuria in chronic glomerulopathies is firmly established as well as the pathogenic role of angiotensin II promoting progression of glomerular disease with an altered glomerular filtration barrier, podocyte injury and scarring of glomeruli. Here we found that chronic angiotensin II-induced hypertension inhibited autophagy flux in mouse glomeruli. Deletion of Atg5 (a gene encoding a protein involved autophagy) specifically in the podocyte resulted in accelerated angiotensin II-induced podocytopathy, accentuated albuminuria and glomerulosclerosis. This indicates that autophagy is a key protective mechanism in the podocyte in this condition. Angiotensin-II induced calpain activity in podocytes inhibits autophagy flux. Podocytes from mice with transgenic expression of the endogenous calpain inhibitor calpastatin displayed higher podocyte autophagy at baseline that was resistant to angiotensin II-dependent inhibition. Also, sustained autophagy with calpastatin limited podocyte damage and albuminuria. These findings suggest that hypertension has pathogenic effects on the glomerular structure and function, in part through activation of calpains leading to blockade of podocyte autophagy. These findings uncover an original mechanism whereby angiotensin II-mediated hypertension inhibits autophagy via calcium-induced recruitment of calpain with pathogenic consequences in case of imbalance by calpastatin activity. Thus, preventing a calpain-mediated decrease in autophagy may be a promising new therapeutic strategy for nephropathies associated with high renin-angiotensin system activity.
Collapse
Affiliation(s)
| | - Blaise Robin
- Université de Paris, PARCC, Inserm, Paris, France
| | - Joëlle Perez
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Anna Chipont
- Université de Paris, PARCC, Inserm, Paris, France
| | - Marine Camus
- Université de Paris, PARCC, Inserm, Paris, France
| | | | - Lea Guyonnet
- Université de Paris, PARCC, Inserm, Paris, France
| | | | | | | | | | | |
Collapse
|
3
|
Liu Y, Xiao J, Sun J, Chen W, Wang S, Fu R, Liu H, Bao H. ATG7 promotes autophagy in sepsis‑induced acute kidney injury and is inhibited by miR‑526b. Mol Med Rep 2020; 21:2193-2201. [PMID: 32323768 PMCID: PMC7115197 DOI: 10.3892/mmr.2020.11001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Sepsis is considered to be the most common contributing factor in the development of acute kidney injury (AKI). However, the mechanisms by which sepsis leads to AKI remain unclear. Autophagy is important for a number of fundamental biological activities and plays a key role in numerous different diseases. The present study demonstrated that autophagy is involved in sepsis-induced kidney injury and upregulates ATG7, LC3 and Beclin I. In addition, it was revealed that miR-526b is decreased in sepsis-induced kidney injury, and miR-526b was identified as a direct regulator of ATG7. Furthermore, the present study investigated the biological effects of ATG7 inhibited by miR-526b and demonstrated that miR-526b could promote cell viability by inhibiting autophagy, potentially through targeting ATG7. In conclusion, the present study highlights the role of autophagy in sepsis-induced AKI, and miR-526b in regulating autophagy through targeting ATG7, which suggested that miR-526b may be a molecular therapeutic target for sepsis-induced AKI.
Collapse
Affiliation(s)
- Ying Liu
- Department of Critical Care Medicine, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jilai Xiao
- Department of Critical Care Medicine, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jiakui Sun
- Department of Critical Care Medicine, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wenxiu Chen
- Department of Critical Care Medicine, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shu Wang
- Department of Critical Care Medicine, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Run Fu
- Department of Critical Care Medicine, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Han Liu
- Department of Critical Care Medicine, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Hongguang Bao
- Department of Anesthesiology, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
4
|
Guan P, Sun ZM, Luo LF, Zhou J, Yang S, Zhao YS, Yu FY, An JR, Wang N, Ji ES. Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis. Life Sci 2019; 225:46-54. [PMID: 30951745 DOI: 10.1016/j.lfs.2019.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
AIMS Hydrogen gas (H2) has a diversity of effects such as anti-apoptotic, anti-inflammatory and anti-oxidative properties. However, molecular mechanism underlying the potential effect of H2 on chronic intermittent hypoxia (CIH) induced renal injury remains obscure. MATERIALS AND METHODS In the present study, adult male Sprague-Dawley rats were randomly allocated into four groups: control (CON) group, CIH group, CIH with H2 treatment (CIH + H2) group, and control with H2 treatment (CON + H2) group. Oxidative stress, autophagy and endoplasmic reticulum (ER) stress were detected to determine how H2 affected the renal function of CIH exposed rats. KEY FINDINGS We demonstrated that rats who inhale hydrogen gas showed improved renal function, alleviated pathological damage, oxidative stress and apoptosis in CIH rats. Meanwhile, CIH-induced endoplasmic reticulum stress was decreased by H2 as the expressions of CHOP, caspase-12, and GRP78 were down-regulated. Furthermore, relative higher levels of LC3-II/I ratio and Beclin-1, with decreased expression of p62, were found after H2 administrated. Inhibition of mTOR may be involved in the upregulation of autophagy by H2. Finally, increased phosphorylation of p38 and JNK was involved in the CIH-induced pathological process. H2 could inhibit the activation of p38 and JNK, suggesting H2 played an active part in resisting renal injury via MAPK. SIGNIFICANCE Taken together, our study reveals that H2 can ameliorate CIH-induced kidney injury by decreasing endoplasmic reticulum stress and activating autophagy through inhibiting oxidative stress-dependent p38 and JNK MAPK activation.
Collapse
Affiliation(s)
- Peng Guan
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Zhi-Min Sun
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Li-Fei Luo
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Jian Zhou
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Ya-Shuo Zhao
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Fu-Yang Yu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Ji-Ren An
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - Na Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, PR China.
| |
Collapse
|
5
|
Zhao W, Zhang L, Chen R, Lu H, Sui M, Zhu Y, Zeng L. SIRT3 Protects Against Acute Kidney Injury via AMPK/mTOR-Regulated Autophagy. Front Physiol 2018; 9:1526. [PMID: 30487750 PMCID: PMC6246697 DOI: 10.3389/fphys.2018.01526] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
Acute kidney injury (AKI), which involves the loss of kidney function caused by damage to renal tubular cells, is an important public health concern. We previously showed that sirtuin (SIRT)3 protects the kidneys against mitochondrial damage by inhibiting the nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, attenuating oxidative stress, and downregulating proinflammatory cytokines. In this article, we investigated the role of autophagy, mediated by a mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK), in the protective effect of SIRT3, against sepsis-induced AKI, in a mouse model of cecal ligation and puncture (CLP). The AKI in CLP mice was associated with the upregulation of autophagy markers; this effect was abolished in SIRT3- mice in parallel with the downregulation of phospho (p)-AMPK and the upregulation of p-mTOR. Pretreatment with the autophagy inhibitor 3-methyladenine (3-MA) or AMPK inhibitor compound isotonic saline (C), exacerbated AKI. SIRT3 overexpression promoted autophagy, upregulated p-AMPK and downregulated p-mTOR in CLP mice, attenuating sepsis-induced AKI, tubular cell apoptosis, and inflammatory cytokine accumulation in the kidneys. The blockage of autophagy induction largely abolished the protective effect of SIRT3 in sepsis-induced AKI. These findings indicate that SIRT3 protects against CLP-induced AKI by inducing autophagy through regulation of the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Wenyu Zhao
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lei Zhang
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Rui Chen
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hanlan Lu
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Mingxing Sui
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Youhua Zhu
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Zeng
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
6
|
Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKα-regulated autophagy induction in streptozotocin-induced diabetic nephropathy. Sci Rep 2017; 7:6852. [PMID: 28761152 PMCID: PMC5537362 DOI: 10.1038/s41598-017-07061-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
Aberrant endoplasmic reticulum (ER) stress and autophagy are associated with diabetic nephropathy. Here we investigated the effect of astragaloside IV (AS-IV) on the progression of diabetic nephropathy (DN) and the underlying mechanism involving ER stress and autophagy in streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-incubated podocytes. The diabetic mice developed progressive albuminuria and glomerulosclerosis within 8 weeks, which were significantly ameliorated by AS-IV treatment in a dose-dependent manner. Moreover, diabetes or HG-induced podocyte apoptosis was markedly attenuated by AS-IV, paralleled by a marked remission in ER stress and a remarkable restoration in impaired autophagy, which were associated with a significant improvement in the expression of sarcoendoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) and AMP-activated protein kinase α (AMPKα) phosphorylation, respectively. Knockdown of SERCA2 in podocytes induced ER stress and largely abolished the protective effect of AS-IV, but had no obvious effect on the expression of autophagy-associated proteins. On the other hand, blockade of either autophagy induction or AMPKα activation could also significantly mitigate AS-IV-induced beneficial effect. Collectively, these results suggest that AS-IV prevented the progression of DN, which is mediated at least in part by SERCA2-dependent ER stress attenuation and AMPKα-promoted autophagy induction.
Collapse
|
7
|
Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int 2016; 90:950-964. [DOI: 10.1016/j.kint.2016.04.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 04/17/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022]
|
8
|
Nolin AC, Mulhern RM, Panchenko MV, Pisarek-Horowitz A, Wang Z, Shirihai O, Borkan SC, Havasi A. Proteinuria causes dysfunctional autophagy in the proximal tubule. Am J Physiol Renal Physiol 2016; 311:F1271-F1279. [PMID: 27582098 DOI: 10.1152/ajprenal.00125.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/22/2016] [Indexed: 12/29/2022] Open
Abstract
Proteinuria is a major risk factor for chronic kidney disease progression. Furthermore, exposure of proximal tubular epithelial cells to excess albumin promotes tubular atrophy and fibrosis, key predictors of progressive organ dysfunction. However, the link between proteinuria and tubular damage is unclear. We propose that pathological albumin exposure impairs proximal tubular autophagy, an essential process for recycling damaged organelles and toxic intracellular macromolecules. In both mouse primary proximal tubule and immortalized human kidney cells, albumin exposure decreased the number of autophagosomes, visualized by the autophagosome-specific fluorescent markers monodansylcadaverine and GFP-LC3, respectively. Similarly, renal cortical tissue harvested from proteinuric mice contained reduced numbers of autophagosomes on electron micrographs, and immunoblots showed reduced steady-state LC3-II content. Albumin exposure decreased autophagic flux in vitro in a concentration-dependent manner as assessed by LC3-II accumulation rate in the presence of bafilomycin, an H+-ATPase inhibitor that prevents lysosomal LC3-II degradation. In addition, albumin treatment significantly increased the half-life of radiolabeled long-lived proteins, indicating that the primary mechanism of degradation, autophagy, is dysfunctional. In vitro, mammalian target of rapamycin (mTOR) activation, a potent autophagy inhibitor, suppressed autophagy as a result of intracellular amino acid accumulation from lysosomal albumin degradation. mTOR activation was demonstrated by the increased phosphorylation of its downstream target, S6K, with free amino acid or albumin exposure. We propose that excess albumin uptake and degradation inhibit proximal tubule autophagy via an mTOR-mediated mechanism and contribute to progressive tubular injury.
Collapse
Affiliation(s)
- Angela C Nolin
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Ryan M Mulhern
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Maria V Panchenko
- Department of Pathology, Boston University, Boston, Massachusetts; and
| | | | - Zhiyong Wang
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Orian Shirihai
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Steven C Borkan
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts
| | - Andrea Havasi
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts;
| |
Collapse
|
9
|
Abstract
Many common renal insults such as ischemia and toxic injury primarily target the tubular epithelial cells, especially the highly metabolically active proximal tubular segment. Tubular epithelial cells are particularly dependent on autophagy to maintain homeostasis and respond to stressors. The pattern of autophagy in the kidney has a unique spatial and chronologic signature. Recent evidence has shown that there is complex cross-talk between autophagy and various cell death pathways. This review specifically discusses the interplay between autophagy and cell death in the renal tubular epithelia. It is imperative to review this topic because recent discoveries have improved our mechanistic understanding of the autophagic process and have highlighted its broad clinical applications, making autophagy a major target for drug development.
Collapse
Affiliation(s)
- Andrea Havasi
- Department of Nephrology, Boston University Medical Center, Boston, MA.
| | - Zheng Dong
- Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood VA Medical Center, Augusta, GA
| |
Collapse
|
10
|
Lenoir O, Jasiek M, Hénique C, Guyonnet L, Hartleben B, Bork T, Chipont A, Flosseau K, Bensaada I, Schmitt A, Massé JM, Souyri M, Huber TB, Tharaux PL. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 2016; 11:1130-45. [PMID: 26039325 DOI: 10.1080/15548627.2015.1049799] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The glomerulus is a highly specialized capillary tuft, which under pressure filters large amounts of water and small solutes into the urinary space, while retaining albumin and large proteins. The glomerular filtration barrier (GFB) is a highly specialized filtration interface between blood and urine that is highly permeable to small and midsized solutes in plasma but relatively impermeable to macromolecules such as albumin. The integrity of the GFB is maintained by molecular interplay between its 3 layers: the glomerular endothelium, the glomerular basement membrane and podocytes, which are highly specialized postmitotic pericytes forming the outer part of the GFB. Abnormalities of glomerular ultrafiltration lead to the loss of proteins in urine and progressive renal insufficiency, underlining the importance of the GFB. Indeed, albuminuria is strongly predictive of the course of chronic nephropathies especially that of diabetic nephropathy (DN), a leading cause of renal insufficiency. We found that high glucose concentrations promote autophagy flux in podocyte cultures and that the abundance of LC3B II in podocytes is high in diabetic mice. Deletion of Atg5 specifically in podocytes resulted in accelerated diabetes-induced podocytopathy with a leaky GFB and glomerulosclerosis. Strikingly, genetic alteration of autophagy on the other side of the GFB involving the endothelial-specific deletion of Atg5 also resulted in capillary rarefaction and accelerated DN. Thus autophagy is a key protective mechanism on both cellular layers of the GFB suggesting autophagy as a promising new therapeutic strategy for DN.
Collapse
Key Words
- BUN, blood urea nitrogen
- CASP3, caspase 3, apoptosis-related cysteine peptidase
- Cdh5, cadherin 5
- DM, diabetes mellitus
- DN, diabetic nephropathy
- ESRD, end-stage renal disease
- GBM, glomerular basement membrane
- GEC, glomerular endothelial cells
- GFB, glomerular filtration barrier
- MAP1LC3A/B/LC3A/B), microtubule-associated protein 1 light chain 3 α/β
- MTOR, mechanistic target of rapamycin
- Nphs2, nephrosis 2, podocin
- SQSTM1, sequestosome 1
- STZ, streptozotocin
- TEM, transmission electron microscopy
- TUBA, tubulin
- autophagy
- diabetic nephropathy
- endothelial cells
- podocytes
- proteinuria
- sclerosis
- α, WT1, Wilms tumor 1
Collapse
Affiliation(s)
- Olivia Lenoir
- a Paris Cardiovascular Research Center; Institut National de la Santé et de la Recherche Médicale (INSERM) ; Paris , France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tharaux PL, Huber TB. How Is Proteinuric Diabetic Nephropathy Caused by Disturbed Proteostasis and Autophagy in Podocytes? Diabetes 2016; 65:539-41. [PMID: 26908902 DOI: 10.2337/dbi15-0026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Pierre-Louis Tharaux
- Paris Cardiovascular Centre, INSERM, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France Nephrology Service, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France FRIAS, Freiburg Institute for Advanced Studies and Center for Biological System Analysis-ZBSA, Freiburg, Germany
| | - Tobias B Huber
- FRIAS, Freiburg Institute for Advanced Studies and Center for Biological System Analysis-ZBSA, Freiburg, Germany Renal Division, University Hospital Freiburg, Freiburg, Germany BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Wang IK, Sun KT, Tsai TH, Chen CW, Chang SS, Yu TM, Yen TH, Lin FY, Huang CC, Li CY. MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury. Life Sci 2015; 136:133-41. [PMID: 26165754 DOI: 10.1016/j.lfs.2015.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 06/04/2015] [Accepted: 07/06/2015] [Indexed: 12/14/2022]
|
13
|
Krones E, Wagner M, Eller K, Rosenkranz AR, Trauner M, Fickert P. Bile acid-induced cholemic nephropathy. Dig Dis 2015; 33:367-75. [PMID: 26045271 DOI: 10.1159/000371689] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Kidney injury in deeply jaundiced patients became known as cholemic nephropathy. This umbrella term covers impaired renal function in cholestatic patients with characteristic histomorphological changes including intratubular cast formation and tubular epithelial cell injury. Cholemic nephropathy represents a widely underestimated but important cause of kidney dysfunction in patients with cholestasis and advanced liver disease. However, the nomenclature is inconsistent since there are numerous synonyms used; the underlying mechanisms of cholemic nephropathy are not entirely clear, and widely accepted diagnostic criteria are still missing. Consequently, the current article aims to summarize the present knowledge on the clinical and morphological characteristics, available preclinical models, derived potential pathomechanisms, and future diagnostic and therapeutic strategies in cholemic nephropathy. Furthermore, we provide a potential research agenda for this evolving field.
Collapse
Affiliation(s)
- Elisabeth Krones
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|
14
|
Buckley KM, Hess DL, Sazonova IY, Periyasamy-Thandavan S, Barrett JR, Kirks R, Grace H, Kondrikova G, Johnson MH, Hess DC, Schoenlein PV, Hoda MN, Hill WD. Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2014; 6:8. [PMID: 24991402 PMCID: PMC4079187 DOI: 10.1186/2040-7378-6-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 05/28/2014] [Indexed: 04/27/2023]
Abstract
BACKGROUND AND PURPOSE The role of autophagy in response to ischemic stroke has been confusing with reports that both enhancement and inhibition of autophagy decrease infarct size and improve post-stroke outcomes. We sought to clarify this by comparing pharmacologic modulation of autophagy in two clinically relevant murine models of stroke. METHODS We used rapamycin to induce autophagy, and chloroquine to block completion of autophagy, by treating mice immediately after stroke and at 24 hours post-stroke in two different models; permanent Middle Cerebral Artery Ligation (MCAL), which does not allow for reperfusion of distal trunk of middle cerebral artery, and Embolic Clot Middle Cerebral Artery Occlusion (eMCAO) which allows for a slow reperfusion similar to that seen in most human stroke patients. Outcome measures at 48 hours post-stroke included infarct size analysis, behavioral assessment using Bederson neurological scoring, and survival. RESULTS Chloroquine treatment reduced the lesion size by approximately 30% and was significant only in the eMCAO model, where it also improved the neurological score, but did not increase survival. Rapamycin reduced lesion size by 44% and 50% in the MCAL and eMCAO models, respectively. Rapamycin also improved the neurological score to a greater degree than chloroquine and improved survival. CONCLUSIONS While both inhibition and enhancement of autophagy by pharmacological intervention decreased lesion size and improved neurological scores, the enhancement with rapamycin showed a greater degree of improvement in outcomes as well as in survival. The protective action seen with chloroquine may be in part due to off-target effects on apoptosis separate from blocking lysosomal activity in autophagy. We conclude pharmacologic induction of autophagy is more advantageous than its blockade in physiologically-relevant permanent and slow reperfusion stroke models.
Collapse
Affiliation(s)
- Kathleen M Buckley
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Daniel L Hess
- The University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Irina Y Sazonova
- Department of Neurology, Georgia Regents University, Augusta, GA, USA
- Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - Sudharsan Periyasamy-Thandavan
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
| | - John R Barrett
- Department of Emergency Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Russell Kirks
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Harrison Grace
- Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Galina Kondrikova
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Maribeth H Johnson
- Department of Biostatistics and Epidemiology, Georgia Regents University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Georgia Regents University, Augusta, GA, USA
| | - Patricia V Schoenlein
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Md Nasrul Hoda
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Department of Neurology, Georgia Regents University, Augusta, GA, USA
- Medical Laboratory, Imaging & Radiologic Sciences, Georgia Regents University, Augusta, GA, USA
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - William D Hill
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA, USA
- Department of Neurology, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
15
|
Satriano J, Sharma K. Autophagy and metabolic changes in obesity-related chronic kidney disease. Nephrol Dial Transplant 2013; 28 Suppl 4:iv29-36. [PMID: 23901047 DOI: 10.1093/ndt/gft229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Obesity is a long-term source of cellular stress that predisposes to chronic kidney disease (CKD). Autophagy is a homeostatic mechanism for cellular quality control through the disposal and recycling of cellular components. During times of cellular stress, autophagy affords mechanisms to manage stress by selectively ridding the cell of the accumulation of potentially toxic proteins, lipids and organelles. The adaptive processes employed may vary between cell types and selectively adjust to the insult by inducing components of the basic autophagy machinery utilized by the cells while not under duress. In this review, we will discuss the autophagic responses of organs to cellular stressors, such as high-fat diet, obesity and diabetes, and how these mechanisms may prevent or promote the progression of disease. The identification of early cellular mechanisms in the advent of obesity- and diabetes-related renal complications could afford avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Joseph Satriano
- Division of Nephrology-Hypertension and O'Brien Kidney Center, Center for Renal Translational Medicine, Stein Institute for Research on Aging, University of California San Diego and the Veterans Administration San Diego Healthcare System, La Jolla, CA, USA
| | | |
Collapse
|