1
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
2
|
Glycation modulates glutamatergic signaling and exacerbates Parkinson's disease-like phenotypes. NPJ Parkinsons Dis 2022; 8:51. [PMID: 35468899 PMCID: PMC9038780 DOI: 10.1038/s41531-022-00314-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/31/2022] [Indexed: 01/17/2023] Open
Abstract
Alpha-synuclein (aSyn) is a central player in the pathogenesis of synucleinopathies due to its accumulation in typical protein aggregates in the brain. However, it is still unclear how it contributes to neurodegeneration. Type-2 diabetes mellitus is a risk factor for Parkinson's disease (PD). Interestingly, a common molecular alteration among these disorders is the age-associated increase in protein glycation. We hypothesized that glycation-induced neuronal dysfunction is a contributing factor in synucleinopathies. Here, we dissected the impact of methylglyoxal (MGO, a glycating agent) in mice overexpressing aSyn in the brain. We found that MGO-glycation potentiates motor, cognitive, olfactory, and colonic dysfunction in aSyn transgenic (Thy1-aSyn) mice that received a single dose of MGO via intracerebroventricular injection. aSyn accumulates in the midbrain, striatum, and prefrontal cortex, and protein glycation is increased in the cerebellum and midbrain. SWATH mass spectrometry analysis, used to quantify changes in the brain proteome, revealed that MGO mainly increase glutamatergic-associated proteins in the midbrain (NMDA, AMPA, glutaminase, VGLUT and EAAT1), but not in the prefrontal cortex, where it mainly affects the electron transport chain. The glycated proteins in the midbrain of MGO-injected Thy1-aSyn mice strongly correlate with PD and dopaminergic pathways. Overall, we demonstrated that MGO-induced glycation accelerates PD-like sensorimotor and cognitive alterations and suggest that the increase of glutamatergic signaling may underly these events. Our study sheds new light into the enhanced vulnerability of the midbrain in PD-related synaptic dysfunction and suggests that glycation suppressors and anti-glutamatergic drugs may hold promise as disease-modifying therapies for synucleinopathies.
Collapse
|
3
|
Medeiros ML, Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal Exacerbates Lipopolysaccharide-Induced Acute Lung Injury via RAGE-Induced ROS Generation: Protective Effects of Metformin. J Inflamm Res 2021; 14:6477-6489. [PMID: 34880648 PMCID: PMC8648108 DOI: 10.2147/jir.s337115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 01/11/2023] Open
Abstract
Purpose Methylglyoxal (MGO) is a highly reactive dicarbonyl species implicated in diabetic-associated diseases. Acute lung injury (ALI) symptoms and prognosis are worsened by diabetes and obesity. Here, we hypothesized that elevated MGO levels aggravate ALI, which can be prevented by metformin. Therefore, this study evaluated the lung inflammation in lipopolysaccharide (LPS)-exposed mice pretreated with MGO. Methods C57Bl/6 male mice treated or not with MGO for 12 weeks were intranasally instilled with LPS (30 µg) to induce ALI, and metformin (300 mg/kg) was given as gavage in the last two weeks of treatment. After 6 h, bronchoalveolar lavage fluid (BALF) and lung tissues were collected to quantify the cell infiltration, cytokine levels, reactive-oxygen species (ROS) production, and RAGE expression. Results LPS exposure markedly increased the neutrophil infiltration in BALF and lung tissue, which was accompanied by higher levels of IFN-γ, TNF-α and IL-1β compared with untreated group. MGO treatment significantly increased the airways neutrophil infiltration and mRNA expressions of TNF-α and IL-1β, whereas COX-2 expression remained unchanged. In lung tissues of LPS-exposed mice, MGO treatment significantly increased the immunostaining and mRNA expression of RAGE, and the ROS levels. Serum MGO concentration achieved after 12-week intake was 9.2-fold higher than control mice, which was normalized by metformin treatment. Metformin also reduced the inflammatory markers in response to MGO. Conclusion MGO intake potentiates the LPS-induced ALI, increases RAGE expression and ROS generation, which is normalized by metformin. MGO scavengers may be a good adjuvant therapy to reduce ALI in patients with cardiometabolic diseases.
Collapse
Affiliation(s)
- Matheus L Medeiros
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Akila L Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
4
|
Metformin abrogates the voiding dysfunction induced by prolonged methylglyoxal intake. Eur J Pharmacol 2021; 910:174502. [PMID: 34516950 DOI: 10.1016/j.ejphar.2021.174502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022]
Abstract
Methylglyoxal (MGO) is a reactive carbonyl species found at high levels in blood of diabetic patients. The anti-hyperglycemic drug metformin can scavenger MGO and reduce the formation of advanced glycation end products (AGEs). Here, we aimed to investigate if MGO-induced bladder dysfunction can be reversed by metformin. Male C57/BL6 mice received 0.5% MGO in drinking water for 12 weeks, and metformin (300 mg/kg, daily gavage) was given in the last two weeks. The bladder functions were evaluated by performing voiding behavior assays, cystometry and in vitro bladder contractions. MGO intake markedly elevated the levels of MGO and fluorescent AGEs in serum and reduced the mRNA expression and activity of glyoxalase (Glo1) in bladder tissues. Glucose levels were unaffected among groups. MGO intake also increased the urothelium thickness and collagen content of the bladder. Void spot assays in conscious mice revealed an increased void volume in MGO group. The cystometric assays in anesthetized mice revealed increases of basal pressure, non-voiding contractions frequency, bladder capacity, inter-micturition pressure and residual volume, which were accompanied by reduced voiding efficiency in MGO group. In vitro bladder contractions to carbachol, α,β-methylene ATP and electrical-field stimulation were significantly greater in MGO group. Metformin normalized the changes of MGO and AGEs levels, Glo1 expression and activity, urothelium thickness and collagen content. The MGO-induced voiding dysfunction were all restored by metformin treatment. Our findings strongly suggest that the amelioration of MGO-induced voiding dysfunction by metformin relies on its ability to scavenger MGO, preventing its accumulation in blood.
Collapse
|
5
|
Mambelli E, Cristino S, Mosconi G, Göbl C, Tura A. Flash Glucose Monitoring to Assess Glycemic Control and Variability in Hemodialysis Patients: The GIOTTO Study. Front Med (Lausanne) 2021; 8:617891. [PMID: 34395456 PMCID: PMC8360859 DOI: 10.3389/fmed.2021.617891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Flash glucose monitoring (FGM) is a technology with considerable differences compared to continuous glucose monitoring (CGM), but it has been scarcely studied in hemodialysis patients. Thus, we aimed assessing the performance of FGM in such patients by comparison to self-monitoring of blood glucose (SMBG). We will also focus on estimation of glycemic control and variability, and their relationships with parameters of glucose homeostasis. Methods: Thirty-one patients (20 with type 2 diabetes, T2DM, 11 diabetes-free, NODM) collected readings by FGM and SMBG for about 12 days on average. Readings by FGM and SMBG were compared by linear regression, Clarke error grid, and Bland-Altman analyses. Several indices of glycemic control and variability were computed. Ten patients also underwent oral glucose tolerance test (OGTT) for assessment of insulin sensitivity/resistance and insulin secretion/beta-cell function. Results: Flash glucose monitoring and SMBG readings showed very good agreement in both T2DM and NODM (on average, 97 and 99% of readings during hemodialysis in A+B Clarke regions, respectively). Some glycemic control and variability indices were similar by FGM and SMBG (p = 0.06–0.9), whereas others were different (p = 0.0001–0.03). The majority of control and variability indices were higher in T2DM than in NODM, according to both FGM and SMBG (p = 0.0005–0.03). OGTT-based insulin secretion was inversely related to some variability indices according to FGM (R < −0.72, p < 0.02). Conclusions: Based on our dataset, FGM appeared acceptable for glucose monitoring in hemodialysis patients, though partial disagreement with SMBG in glycemic control/variability assessment needs further investigations.
Collapse
Affiliation(s)
- Emanuele Mambelli
- Nephrology and Dialysis, Bufalini Hospital, AUSL Romagna, Cesena, Italy
| | - Stefania Cristino
- Nephrology and Dialysis, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Giovanni Mosconi
- Nephrology and Dialysis, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Christian Göbl
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | - Andrea Tura
- CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
6
|
Ishikawa-Tanaka T, Hosojima M, Kabasawa H, Kaseda R, Yasukawa R, Yata Y, Kuwahara S, Kono E, Takata T, Iino N, Tanaka T, Kitamura N, Suzuki Y, Saito A, Narita I. Effects of DPP-4 Inhibitors on Blood Glucose Variability in Japanese Patients with Type 2 Diabetes on Maintenance Hemodialysis: A Prospective Observational Exploratory Study. Diabetes Ther 2020; 11:2845-2861. [PMID: 33000383 PMCID: PMC7644617 DOI: 10.1007/s13300-020-00928-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The precise blood glucose (BG) profile of hemodialysis patients is unclear, as is the effectiveness of dipeptidyl peptidase-4 (DPP-4) inhibitors in hemodialysis patients with type 2 diabetes. Here, we used continuous glucose monitoring (CGM) to evaluate BG variability in these patients and to assess the efficacy of DPP-4 inhibitors, particularly during hemodialysis sessions and at nighttime (UMIN000012638). METHODS We examined BG profiles using CGM in 31 maintenance hemodialysis patients with type 2 diabetes. Differences between patients with and without DPP-4 inhibitors (n = 15 and 16, respectively) were analyzed using a linear mixed-effects model to assess changes in glucose levels in 5-min intervals. RESULTS The model revealed that DPP-4 inhibitor use was significantly associated with suppression of a rapid drop in glucose levels, both with and without adjustment for BG levels at the start of hemodialysis. Moreover, the model revealed that the two groups differed significantly in the pattern of changes in BG levels from 0:00 to 6:55 am. DPP-4 inhibitors suppressed the tendency for subsequent nocturnal hypoglycemia. CONCLUSIONS This prospective observational exploratory study showed that DPP-4 inhibitors could suppress BG variability during hemodialysis sessions as well as subsequent nocturnal changes in patients with type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov identifier, UMIN000012638.
Collapse
Affiliation(s)
- Tomomi Ishikawa-Tanaka
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Internal Medicine, Itoigawa General Hospital, Niigata, Japan
| | - Michihiro Hosojima
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Hideyuki Kabasawa
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryohei Kaseda
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryota Yasukawa
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yusuke Yata
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shoji Kuwahara
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Emiko Kono
- Department of Nephrology, Nagaoka Chuo General Hospital, Niigata, Japan
| | - Takuma Takata
- Department of Nephrology, Nagaoka Chuo General Hospital, Niigata, Japan
| | - Noriaki Iino
- Department of Nephrology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Takahiro Tanaka
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Nobutaka Kitamura
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Yoshiki Suzuki
- Health Administration Center, Niigata University, Niigata, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
7
|
de Oliveira MG, de Medeiros ML, Tavares EBG, Mónica FZ, Antunes E. Methylglyoxal, a Reactive Glucose Metabolite, Induces Bladder Overactivity in Addition to Inflammation in Mice. Front Physiol 2020; 11:290. [PMID: 32317986 PMCID: PMC7147252 DOI: 10.3389/fphys.2020.00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetic bladder dysfunction (DBD) is one of the most common complication of diabetes. Methylglyoxal (MGO), a highly reactive dicarbonyl compound formed as a by-product of glycolysis, is found at high levels in plasma of diabetic patients. Here, we explored the effects of chronic administration of MGO on micturition pattern (cystometry) and bladder contractility in vitro in healthy male C57/BL6 mice. Methylglyoxal was given at 0.5% in drinking water for 4 weeks. Exposure to MGO led to bladder tissue disorganization, edema of lamina propria, partial loss of urothelium and multiple leukocyte infiltrates. Filling cystometry revealed significant increases of micturition frequency and number of non-voiding contractions (NVCs) in the MGO group, clearly indicating an overactive bladder profile. Bladder contractions induced by electrical-field stimulation (EFS) and carbachol were significantly higher in the MGO group, while the muscarinic M2 and M3 mRNA expressions remained unchanged between groups. Additionally, MGO exposure induced upregulation of TRPA1 and down-regulation of TRPV1 and TRPV4 in bladder tissues. Methylglyoxal did not change the mRNA expression of the advanced glycation end products receptor (RAGE), but markedly increased its downstream NF-κB - iNOS signaling. The mRNA expression of cyclooxygenase-2 (COX-2) and reactive-oxygen species (ROS) levels remained unchanged. Altogether, our data show that 4-week MGO intake in mice produces an overactive bladder phenotype in addition to bladder inflammation and increased NF-kB/iNOS signaling. TRPA1 up-regulation and TRPV1/TRPV4 down-regulation may account for the MGO-induced bladder overactivity. Scavengers of MGO could be an option to ameliorate bladder dysfunction in diabetic conditions.
Collapse
Affiliation(s)
| | | | - Edith B G Tavares
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiola Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
8
|
Medeiros ML, de Oliveira MG, Tavares EG, Mello GC, Anhê GF, Mónica FZ, Antunes E. Long-term methylglyoxal intake aggravates murine Th2-mediated airway eosinophil infiltration. Int Immunopharmacol 2020; 81:106254. [PMID: 32007798 DOI: 10.1016/j.intimp.2020.106254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 01/02/2023]
Abstract
Asthma outcomes is aggravated in obese patients. Excess of methylglyoxal (MGO) in obese/diabetic patients has been associated with diverse detrimental effects on cell function. This study aimed to evaluate the effects of long-term oral intake of MGO on ovalbumin-induced eosinophil inflammation. Male C57/Bl6 mice received 0.5% MGO in the drinking water for 12 weeks. Mice were sensitized and challenged with ovalbumin (OVA), and at 48 h thereafter, bronchoalveolar lavage (BAL) fluid and lungs were collected for cell counting, morphological analysis, and ELISA, mRNA expressions and DHE assays. In MGO-treated mice, OVA challenge significantly increased the peribronchiolar infiltrations of inflammatory cells and eosinophils compared with control group. Higher levels of IL-4, IL-5, and eotaxin in BAL fluid were also detected in MGO compared with control group. In addition, lung tissue of MGO-treated mice displayed significant increases in mRNA expressions of NF-κB and iNOS whereas COX-2 expression remained unchanged. The high TNF-α mRNA expression observed in lungs of OVA-challenged control mice was not further increased by MGO treatment. In MGO group, OVA-challenge increased significantly the NOX-2 and NOX-4 mRNA expressions, without affecting the NOX-1 expression. Levels of reactive-oxygen species (ROS) were significantly higher in lungs of MGO-treated mice, and no further increase by OVA-challenge was observed. In conclusion, 12-week intake of MGO exacerbates Th2-mediated airway eosinophil infiltration by activation of NF-kB/iNOS-dependent signaling pathway and positive regulation of NOX-2 and NOX-4 in the lung tissues. Scavengers of MGO could be an option to prevent obesity-related asthma.
Collapse
Affiliation(s)
- Matheus L Medeiros
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Edith G Tavares
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Glaucia C Mello
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Gabriel F Anhê
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabiola Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Ciobanu A, Selescu T, Gasler I, Soltuzu L, Babes A. Glycolytic metabolite methylglyoxal inhibits cold and menthol activation of the transient receptor potential melastatin type 8 channel. J Neurosci Res 2015; 94:282-94. [DOI: 10.1002/jnr.23700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 12/28/2022]
Affiliation(s)
- A.C. Ciobanu
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - T. Selescu
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - I. Gasler
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - L. Soltuzu
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| | - A. Babes
- Department of Anatomy; Physiology, and Biophysics, Faculty of Biology, University of Bucharest; Bucharest Romania
| |
Collapse
|