1
|
Khokhar M. Non-invasive detection of renal disease biomarkers through breath analysis. J Breath Res 2024; 18:024001. [PMID: 38099568 DOI: 10.1088/1752-7163/ad15fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Breath biomarkers are substances found in exhaled breath that can be used for non-invasive diagnosis and monitoring of medical conditions, including kidney disease. Detection techniques include mass spectrometry (MS), gas chromatography (GC), and electrochemical sensors. Biosensors, such as GC-MS or electronic nose (e-nose) devices, can be used to detect volatile organic compounds (VOCs) in exhaled breath associated with metabolic changes in the body, including the kidneys. E-nose devices could provide an early indication of potential kidney problems through the detection of VOCs associated with kidney dysfunction. This review discusses the sources of breath biomarkers for monitoring renal disease during dialysis and different biosensor approaches for detecting exhaled breath biomarkers. The future of using various types of biosensor-based real-time breathing diagnosis for renal failure is also discussed.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
2
|
Romani A, Marrone G, Celotto R, Campo M, Vita C, Chiaramonte C, Carretta A, Di Daniele N, Noce A. Utility of SIFT-MS to evaluate volatile organic compounds in nephropathic patients' breath. Sci Rep 2022; 12:10413. [PMID: 35729207 PMCID: PMC9428186 DOI: 10.1038/s41598-022-14152-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Several studies highlighted a correlation between exhaled air volatile organic compounds (VOCs) and some pathological conditions, such as chronic kidney disease (CKD), chronic liver disease, etc. In fact, in literature has been reported that CKD is characterized by an increased concentration of ammonia, trimethylamine (TMA) and isoprene compared to healthy subjects. Currently, there is not a validate and standardized method to detect VOCs. For this purpose, we examined the utility of selected ion flow tube-mass spectrometry (SIFT-MS) to measure VOCs in CKD patients and we evaluated the possible correlation between VOCs and the presence of CKD and its stage. We enrolled 68 CKD patients under conservative therapy and 54 healthy subjects. The analysis of the VOCs of the exhaled air of the enrolled subjects was performed by SIFT-MS. Among all the VOCs analyzed, the most relevant results by ROC curves were observed for TMA, acetone, ammonia and dimethyl sulfide. We found that a breath TMA concentration superior to 26 ppbv characterizes a 6.11 times greater risk of CKD, compared to subjects with lower levels. Moreover, we detected an increased concentration of acetone and ammonia in CKD patients compared to healthy subjects. We highlight the potential utility of SIFT-MS in CKD clinical management. Clinical trial registry: R.S. 15.19 of 6 February 2019.
Collapse
Affiliation(s)
- Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy
| | - Roberto Celotto
- Department of Cardiovascular Disease, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Margherita Campo
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Chiara Vita
- QuMAP-PIN S.c.r.l.-Polo Universitario "Città di Prato" Servizi Didattici e Scientifici per L'Università di Firenze, Piazza Giovanni Ciardi, 25, 59100, Prato, Italy
| | - Carlo Chiaramonte
- Department of Statistics, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy.
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
3
|
Velusamy P, Su CH, Ramasamy P, Arun V, Rajnish N, Raman P, Baskaralingam V, Senthil Kumar SM, Gopinath SCB. Volatile Organic Compounds as Potential Biomarkers for Noninvasive Disease Detection by Nanosensors: A Comprehensive Review. Crit Rev Anal Chem 2022; 53:1828-1839. [PMID: 35201946 DOI: 10.1080/10408347.2022.2043145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biomarkers are biological molecules associated with physiological changes of the body and aids in the detecting the onset of disease in patients. There is an urgent need for self-monitoring and early detection of cardiovascular and other health complications. Several blood-based biomarkers have been well established in diagnosis and monitoring the onset of diseases. However, the detection level of biomarkers in bed-side analysis is difficult and complications arise due to the endothelial dysfunction. Currently single volatile organic compounds (VOCs) based sensors are available for the detection of human diseases and no dedicated nanosensor is available for the elderly. Moreover, accuracy of the sensors based on a single analyte is limited. Hence, breath analysis has received enormous attention in healthcare due to its relatively inexpensive, rapid, and noninvasive methods for detecting diseases. This review gives a detailed analysis of how biomarker imprinted nanosensor can be used as a noninvasive method for detecting VOC to health issues early using exhaled breath analysis.
Collapse
Affiliation(s)
- Palaniyandi Velusamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, Taishan, Taipei, Taiwan
| | - Palaniappan Ramasamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Viswanathan Arun
- Department of Biotechnology SRFBMST, Sri Ramachandra Institute of Higher Education & Research, Chennai, Tamil Nadu, India
| | - Narayanan Rajnish
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vaseeharan Baskaralingam
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology and Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, Kedah, Malaysia
| |
Collapse
|
4
|
Franchetti Y, Nolin TD. Dose Optimization in Kidney Disease: Opportunities for PBPK Modeling and Simulation. J Clin Pharmacol 2020; 60 Suppl 1:S36-S51. [PMID: 33205428 DOI: 10.1002/jcph.1741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
Kidney disease affects pharmacokinetic (PK) profiles of not only renally cleared drugs but also nonrenally cleared drugs. The impact of kidney disease on drug disposition has not been fully elucidated, but describing the extent of such impact is essential for conducting dose optimization in kidney disease. Accurate evaluation of kidney function has been a clinical interest for dose optimization, and more scientists pay attention and conduct research for clarifying the role of drug transporters, metabolic enzymes, and their interplay in drug disposition as kidney disease progresses. Physiologically based pharmacokinetic (PBPK) modeling and simulation can provide valuable insights for dose optimization in kidney disease. It is a powerful tool to integrate discrete knowledge from preclinical and clinical research and mechanistically investigate system- and drug-dependent factors that may contribute to the changes in PK profiles. PBPK-based prediction of drug exposures may be used a priori to adjust dosing regimens and thereby minimize the likelihood of drug-related toxicity. With real-time clinical studies, parameter estimation may be performed with PBPK approaches that can facilitate identification of sources of interindividual variability. PBPK modeling may also facilitate biomarker research that aids dose optimization in kidney disease. U.S. Food and Drug Administration guidances related to conduction of PK studies in kidney impairment and PBPK documentation provide the foundation for facilitating model-based dose-finding research in kidney disease.
Collapse
Affiliation(s)
- Yoko Franchetti
- Department of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Harshman SW, Pitsch RL, Davidson CN, Lee EM, Scott AM, Hill EM, Mainali P, Brooks ZE, Strayer KE, Schaeublin NM, Wiens TL, Brothers MC, Drummond LA, Yamamoto DP, Martin JA. Evaluation of a standardized collection device for exhaled breath sampling onto thermal desorption tubes. J Breath Res 2020; 14:036004. [PMID: 32155613 DOI: 10.1088/1752-7163/ab7e3b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Respiration Collector for In Vitro Analysis (ReCIVA) sampler, marketed by Owlstone Medical, provides a step forward in exhaled breath sampling through active sampling directly onto thermal desorption (TD) tubes. Although an improvement to the issues surrounding breath bag sampling, the ReCIVA device, first released in 2015, is a relatively new research and clinical tool that requires further exploration. Here, data are presented comparing two distinct ReCIVA devices. The results, comparing ReCIVA serial numbers #33 and #65, demonstrate that overall statistically insignificant results are obtained via targeted isoprene quantitation (p > 0.05). However, when the data are parsed by the TD tube type used to capture breath volatiles, either Tenax TA or the dual bed Tenax/Carbograph 5TD (5TD), a statistical difference (p < 0.05) among the two different TD tubes was present. These data, comparing the two ReCIVA devices with both Tenax TA and 5TD tubes, are further supported by a global metabolomics analysis yielding 85% of z-scores, comparing ReCIVA devices, below the limit for significance. Experiments to determine the effect of breathing rate on ReCIVA function, using guided breathing for low (7.5 breaths min-1) and high (15 breaths min-1) breathing rates, demonstrate the ReCIVA device shows no statistical difference among breathing rates for quantitated isoprene (p > 0.05). Global metabolomics analysis of the guided breathing rate data shows more than 87% of the z-scores, comparing high and low breathing rates using both the Tenax and the 5TD tubes, are below the level for significance. Finally, data are provided from a single participant who displayed background levels of isoprene while illustrating levels of acetone consistent with the remaining participants. Collectively, these data support the use of multiple ReCIVA devices for exhaled breath collection and provide evidence for an instance where exhaled isoprene is consistent with background levels.
Collapse
Affiliation(s)
- Sean W Harshman
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHBB, 2510 Fifth Street, Area B, Building 840, Wright-Patterson Air Force Base, OH 45433, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Franchetti Y, Nolin TD. Simultaneous Assessment of Hepatic Transport and Metabolism Pathways with a Single Probe Using Individualized PBPK Modeling of 14CO 2 Production Rate Data. J Pharmacol Exp Ther 2019; 371:151-161. [PMID: 31399494 DOI: 10.1124/jpet.119.257212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022] Open
Abstract
Erythromycin is a substrate of cytochrome P4503A4 (CYP3A4) and multiple drug transporters. Although clinical evidence suggests that uptake transport is likely to play a dominant role in erythromycin's disposition, the relative contributions of individual pathways are unclear. Phenotypic evaluation of multiple pathways generally requires a probe drug cocktail. This approach can result in ambiguous conclusions due to imprecision stemming from overlapping specificity of multiple drugs. We hypothesized that an individualized physiologically based pharmacokinetic modeling approach incorporating 14CO2 production rates (iPBPK-R) of the erythromycin breath test (ERMBT) would enable us to differentiate the contribution of metabolic and transporter pathways to erythromycin disposition. A seven-compartmental physiologically based pharmacokinetic (PBPK) model was built for 14C-erythromycin administered intravenously. Transporter clearance and CYP3A4 clearance were embedded in hepatic compartments. 14CO2 production rates were simulated taking the first derivative of by-product 14CO2 concentrations. Parameters related to nonrenal elimination pathways were estimated by model fitting the ERMBT data of 12 healthy subjects individually. Optimized iPBPK-R models fit the individual rate data well. Using one probe, nine PBPK parameters were simultaneously estimated per individual. Maximum velocity of uptake transport, CYP3A4 clearance, total passive diffusion, and others were found to collectively control 14CO2 production rates. The median CYP3A4 clearance was 12.2% of the input clearance. Male subjects had lower CYP3A4 activity than female subjects by 11.3%. We applied iPBPK-R to ERMBT data to distinguish and simultaneously estimate the activity of multiple nonrenal elimination pathways in healthy subjects. The iPBPK-R framework is a novel tool for delineating rate-limiting and non-rate-limiting elimination pathways using a single probe. SIGNIFICANCE STATEMENT: Our developed individualized physiologically based pharmacokinetic modeling approach incorporating rate data (iPBPK-R) enabled us to distinguish and simultaneously estimate the activity of multiple nonrenal elimination pathways of erythromycin in healthy subjects. A new interpretation of erythromycin breath test (ERMBT) data was also obtained via iPBPK-R. We found that rate data have rich information allowing estimation of per-person PBPK parameters. This study serves as proof of principle that the iPBPK-R framework is a novel tool for delineating rate-limiting and non-rate-limiting elimination pathways using a single probe. iPBPK-R can be applied to other rate-derived data beyond ERMBT. Potential areas of application include drug-drug interaction, pathophysiological effects on drug disposition, and the role of biomarkers on hemodialysis efficiency utilizing estimated adjustment factors with correlation analysis.
Collapse
Affiliation(s)
- Yoko Franchetti
- Departments of Pharmaceutical Sciences (Y.F.) and Pharmacy and Therapeutics (T.D.N.), Center of Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Thomas D Nolin
- Departments of Pharmaceutical Sciences (Y.F.) and Pharmacy and Therapeutics (T.D.N.), Center of Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| |
Collapse
|