1
|
Inci K, Aygencel G, Dundar NB, Helvaci O, Turkoglu M. Factors and outcomes related to new-onset acute kidney injury in septic medical intensive care unit patients. North Clin Istanb 2024; 11:414-421. [PMID: 39431032 PMCID: PMC11487303 DOI: 10.14744/nci.2024.30040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVE Sepsis-induced acute kidney injury (AKI) is a significant threat, contributing to worse outcomes in intensive care unit (ICU) patients. Thus, understanding the complex relationship between sepsis and renal dysfunction in ICU patients is crucial. We aimed to investigate the factors that may predispose to the development and the clinical consequences of new-onset AKI in septic medical ICU patients in this study. METHODS This retrospective cohort was conducted between December 2019 and April 2023 in the tertiary medical ICU of Gazi University Hospital, Ankara, Turkiye. Participants included septic medical ICU patients aged ≥18 without AKI on ICU admission. Data included demographics, comorbidities, disease severity and prognostic scoring, ICU admission, and ICU follow-up data. Statistical analyses, including logistic regression, were performed to identify independent risk factors for new-onset AKI development and ICU mortality. RESULTS Patients with new-onset AKI (36% incidence) had higher APACHE-II (21 [16-27] vs. 16 [12-18]) and SOFA (6 [3-9] vs. 3 [2-5]) scores and lower GCS (10 [6-15] vs. 14 [10-15]) on ICU admission (p<0.01 for all results). Independent risk factors for both new AKI development and ICU mortality included invasive mechanical ventilation (IMV) (OR (95% CI): 5.02 [1.59-15] for AKI and OR (95% CI): 13.2 [3-58.8] for ICU mortality, p<0.01), new-onset shock (OR (95% CI): 3.98 [1.42-11.1] for AKI, OR (95% CI): 14.5 [4.4-43.5] for mortality, p<0.01), and higher APACHE-II score (OR (95% CI): 1.08 [1.01-1.16]), for AKI, p=0.05 and (OR (95% CI): 1.04 [1.01-1.08], for mortality, p=0.01). AKI was more frequent in patients whose source of infection was the respiratory system (45% vs. 29%, p=0.01) and catheter-related bloodstream infection (CRBSI) (17% vs. 8%, p=0.03) than those who did not. New AKI development was associated with longer ICU stay (9 [5-18] vs. 5 [3-10] days, p<0.01) and was independently associated with ICU mortality (OR (95% CI): 28.6 [6.6-125], p<0.01). CONCLUSION This study reveals new-onset AKI incidence of 36% in septic medical ICU patients. Additionally, it underlines the potential impact of infection sources on new AKI development. New-onset shock, IMV, and disease severity were independently associated with both new-onset AKI and ICU mortality in this population.
Collapse
Affiliation(s)
- Kamil Inci
- Division of Critical Care, Department of Internal Medicine, Gazi University Faculty of Medicine, Ankara, Turkiye
| | - Gulbin Aygencel
- Division of Critical Care, Department of Internal Medicine, Gazi University Faculty of Medicine, Ankara, Turkiye
| | - Nazlihan Boyaci Dundar
- Division of Critical Care, Department of Internal Medicine, Gazi University Faculty of Medicine, Ankara, Turkiye
| | - Ozant Helvaci
- Division of Nephrology, Department of Internal Medicine, Gazi University Faculty of Medicine, Ankara, Turkiye
| | - Melda Turkoglu
- Division of Critical Care, Department of Internal Medicine, Gazi University Faculty of Medicine, Ankara, Turkiye
| |
Collapse
|
2
|
Zhang P, Guo E, Xu L, Shen Z, Jiang N, Liu X. Knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney. BMC Nephrol 2024; 25:79. [PMID: 38443846 PMCID: PMC10916237 DOI: 10.1186/s12882-024-03513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Sepsis is a life-threatening, systemic inflammatory disease that can lead to a variety of conditions, including septic acute kidney injury (AKI). Recently, multiple circular Rnas (circRNAs) have been implicated in the development of this disease. METHODS In this study, we aimed to elucidate the role of circ-Gatad1 in sepsis induced AKI and its potential mechanism of action. High-throughput sequencing was used to investigate abnormal expression of circRNA in AKI and healthy volunteer. Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. HK2 cells were employ to analysis the ROS, inflammatory cytokines expression, proliferation and apoptosis under LPS condition. RESULTS The result show that the expression of circ-Gatad1 was increased in septic acute kidney patients. Downregulation circ-Gatad1 suppressed LPS-treated induced HK2 cells injury including apoptosis, proliferation ability, ROS and inflammatory cytokines level. Bioinformatics and luciferase report analysis confirmed that both miR-22-3p and TRPM7 were downstream targets of circ-Gatad1. Overexpression of TRPM7 or downregulation of miR-22-3p reversed the protective effect of si-circ-Gatad1 to HK2 after exposure to LPS (5 µg/ml) microenvironment. CONCLUSION In conclusion, knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Enwei Guo
- Department of Intensive Care Unit, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Limin Xu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Zhenhua Shen
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Na Jiang
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China
| | - Xinhui Liu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, 200135, Shanghai, China.
| |
Collapse
|
3
|
Li J, Wang L, Wang B, Zhang Z, Jiang L, Qin Z, Zhao Y, Su B. NOX4 is a potential therapeutic target in septic acute kidney injury by inhibiting mitochondrial dysfunction and inflammation. Theranostics 2023; 13:2863-2878. [PMID: 37284448 PMCID: PMC10240817 DOI: 10.7150/thno.81240] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Rationale: Sepsis is a severe clinical syndrome featured through organ dysfunction due to infection, while the accompanying acute kidney injury (AKI) is linked to significant incidence of morbidity as well as mortality. Recently, emerging evidence has revealed that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) is implicated in various renal diseases, while its role and modulation in septic acute kidney injury (S-AKI) remains largely unknown. Methods: In vivo, S-AKI in wild-type and renal tubular epithelial cell (RTEC)-specific NOX4 knockout mice was induced by lipopolysaccharides (LPS) injection or cecal ligation and puncture (CLP). In vitro, TCMK-1 (mouse kidney tubular epithelium cell line) cells were treated with LPS. Serum and supernatant biochemical, mitochondrial dysfunctional, inflammatory and apoptotic parameters were measured and compared across groups. The activation of reactive oxygen species (ROS) and NF-κB signaling was also assessed. Results: NOX4 was predominantly upregulated in RTECs of S-AKI mouse model induced by LPS/CLP and cultured TCMK-1 cells exposed to LPS. RTEC-specific deletion of NOX4 or pharmacological inhibition of NOX4 by GKT137831 both alleviated LPS/CLP-injured renal function and pathology in mice. Furthermore, NOX4 inhibition alleviated mitochondrial dysfunction supported by ultrastructural damage, reduction of ATP production and mitochondrial dynamics imbalance, together with inflammation and apoptosis in kidney injured by LPS/CLP and TCMK-1 cells injured by LPS, while NOX4 overexpression aggravated the above-mentioned indices in TCMK-1 cells with LPS stimulation. Mechanism-wise, the raised NOX4 in RTECs may induce ROS and NF-κB signaling activation in S-AKI. Conclusions: Collectively, genetic or pharmacological inhibition of NOX4 protects from S-AKI by reducing generation of ROS and activation of NF-κB signal, which suppress mitochondrial dysfunction, inflammation together with apoptosis. NOX4 may act as a novel target for the S-AKI therapy.
Collapse
Affiliation(s)
- Jiameng Li
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liya Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuyun Zhang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luojia Jiang
- Department of Nephrology, Jiujiang No. 1 People's Hospital, Jiujiang 332000, China
| | - Zheng Qin
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuliang Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baihai Su
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Wu HP, Chuang LP, Liu PH, Chu CM, Yu CC, Lin SW, Kao KC, Li LF, Chuang DY. Decreased Monocyte HLA-DR Expression in Patients with Sepsis and Acute Kidney Injury. Medicina (B Aires) 2022; 58:medicina58091198. [PMID: 36143874 PMCID: PMC9506340 DOI: 10.3390/medicina58091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Background and objectives: Acute kidney injury (AKI) is common in critically ill patients, especially those with sepsis. Persistently low human leukocyte antigen (HLA)-DR expression in monocytes reflects the decreased function of antigen-presenting cells, contributing to poor outcomes in sepsis. This study aimed to establish an association between AKI and HLA-DR expression in monocytes of patients with sepsis. Materials and Methods: We detected HLA-DR expression in monocytes and measured plasma levels of S100A12, high-mobility group box 1 (HMGB1), advanced glycation end products (AGE), and soluble receptor for AGE (sRAGE) from septic patients and healthy controls. Results: HLA-DR expression in monocytes was decreased in patients with AKI than in those without AKI (29.8 ± 5.0% vs. 53.1 ± 5.8%, p = 0.005). Compared with AKI patients, the mean monocyte HLA-DR expression in patients with end-stage renal disease was increased without statistical significance. There were no differences in the AGE/sRAGE ratio and plasma levels of S100A12, HMGB1, AGE, and sRAGE between patients with and without AKI. Conclusions: Compared with septic patients without AKI, patients with AKI had significantly lower HLA-DR expression in monocytes. The role of hemodialysis in monocyte HLA-DR expression needs further studies to explore.
Collapse
Affiliation(s)
- Huang-Pin Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Pang Chuang
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Pi-Hua Liu
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chien-Ming Chu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chung-Chieh Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shih-Wei Lin
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kuo-Chin Kao
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Li-Fu Li
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Duen-Yau Chuang
- Department of Chemistry, National Chung-Hsing University, Taichung 40227, Taiwan
- Correspondence: ; Tel.: +886-4-22840411 (ext. 817); Fax: +886-4-22862547
| |
Collapse
|
5
|
Behal ML, Nguyen JL, Li X, Feola DJ, Neyra JA, Flannery AH. Azithromycin and Major Adverse Kidney Events in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury. Shock 2022; 57:479-485. [PMID: 34731096 PMCID: PMC9725110 DOI: 10.1097/shk.0000000000001883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) is associated with significant morbidity and mortality. Immune dysregulation is a hallmark of sepsis, with important contributions to organ dysfunction including injury and repair mechanisms in AKI. Macrolide antibiotics, such as azithromycin, have previously demonstrated in preclinical models a myriad of immunomodulatory effects that may benefit critically ill patients with SA-AKI. The aim of this study was to determine if early receipt of azithromycin in SA-AKI is associated with a reduction in major adverse kidney events (MAKE) at hospital discharge. METHODS This was a single center, retrospective cohort study of critically ill adult patients with SA-AKI. Early exposure to azithromycin was defined as receipt of one or more doses within 48 h of a hospital admission with SA-AKI. The primary outcome of MAKE assessed at hospital discharge was the composite of death, requirement for kidney replacement therapy, or a decline in estimated glomerular filtration rate of 25% or more. Multivariable logistic regression was used to account for potential confounders in the assessment. RESULTS Of 737 included patients with SA-AKI, 152 (20.6%) received azithromycin. Patients that received early azithromycin were less likely to experience MAKE at hospital discharge when compared to those patients not receiving azithromycin: 38.8% versus 48.4% (P = 0.035). In multivariable logistic regression, receipt of azithromycin was independently associated with a decreased odds of MAKE at hospital discharge (aOR 0.62, 95% CI 0.41-0.93). CONCLUSIONS Early exposure to azithromycin in SA-AKI is independently associated with lower odds of MAKE at hospital discharge.
Collapse
Affiliation(s)
- Michael L. Behal
- University of Kentucky HealthCare, Department of Pharmacy Services, Lexington, KY USA
| | - Jonny L. Nguyen
- University of Kentucky College of Pharmacy, Department of Pharmacy Practice and Science, Lexington, KY USA
| | - Xilong Li
- University of Texas Southwestern Medical Center, Department of Population and Data Sciences, Dallas, TX USA
| | - David J. Feola
- University of Kentucky College of Pharmacy, Department of Pharmacy Practice and Science, Lexington, KY USA
| | - Javier A. Neyra
- University of Kentucky College of Medicine, Department of Internal Medicine, Division of Nephrology, Bone, and Mineral Metabolism, Lexington, KY USA
| | - Alexander H. Flannery
- University of Kentucky HealthCare, Department of Pharmacy Services, Lexington, KY USA
- University of Kentucky College of Pharmacy, Department of Pharmacy Practice and Science, Lexington, KY USA
| |
Collapse
|
6
|
The Complex Interplay between Autophagy and NLRP3 Inflammasome in Renal Diseases. Int J Mol Sci 2021; 22:ijms222312766. [PMID: 34884572 PMCID: PMC8657456 DOI: 10.3390/ijms222312766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a highly conserved process of the eukaryotic cell cycle. It plays an important role in the survival and maintenance of cells by degrading organelles, proteins, and macromolecules in the cytoplasm and the circulation of degraded products. The dysfunction of autophagy can lead to the pathology of many human diseases. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome belongs to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs) and can induce caspase-1 activation, thus leading to the maturation and secretion of interleukin-1beta (IL-1β) and IL-18. It has been reported that the interplay between autophagy and NLRP3 inflammasome is involved in many diseases, including renal diseases. In this review, the interplay between autophagy and the NLRP3 inflammasome and the mechanisms in renal diseases are explored to provide ideas for relevant basic research in the future.
Collapse
|
7
|
Onishi K, Fu HY, Sofue T, Tobiume A, Moritoki M, Saiga H, Ohmura-Hoshino M, Hoshino K, Minamino T. Galectin-9 deficiency exacerbates lipopolysaccharide-induced hypothermia and kidney injury. Clin Exp Nephrol 2021; 26:226-233. [PMID: 34698914 DOI: 10.1007/s10157-021-02152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Galectin-9 (Gal-9) is a multifunctional lectin that moderates inflammation and organ damage. In this study, we tested whether Gal-9 has a protective role in the pathogenesis of endotoxemic acute kidney injury. METHODS We examined the levels of Gal-9 in control mice after lipopolysaccharide (LPS) administration. We developed Gal-9 knockout (KO) mice that lack Gal-9 systemically and evaluated the role of Gal-9 in LPS-induced proinflammatory cytokines, vascular permeability, and renal injury. RESULTS Gal-9 levels were increased in the plasma, kidney, and spleen within 4 h after LPS administration to wild-type mice. Gal-9 deficiency did not affect the LPS-induced increase in plasma tumor necrosis factor-α levels at 1 h or vascular permeability at 6 h. Lower urine volume and reduced creatinine clearance were observed in Gal-9-KO mice compared with wild-type mice after LPS administration. Gal-9-KO mice had limited improvement in urine volume after fluid resuscitation compared with wild-type mice. LPS reduced the body temperature 12 h after its administration. Hypothermia had disappeared in wild-type mice by 24 h, whereas it was sustained until 24 h in Gal-9-KO mice. Importantly, maintaining body temperature in Gal-9-KO mice improved the response of urine flow to fluid resuscitation. CONCLUSION Deficiency in Gal-9 worsened LPS-induced hypothermia and kidney injury in mice. The accelerated hypothermia induced by Gal-9 deficiency contributed to the blunted response to fluid resuscitation.
Collapse
Affiliation(s)
- Keisuke Onishi
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.
| | - Hai Ying Fu
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Tadashi Sofue
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Atsushi Tobiume
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Masahiro Moritoki
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Hiroyuki Saiga
- Department of Immunology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Mari Ohmura-Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.,Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, 1200 Kayo-cho, Yokkaichi, Mie, 512-8045, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Tetsuo Minamino
- Division of Nephrology and Dialysis, Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| |
Collapse
|
8
|
Zhi D, Zhang M, Lin J, Liu P, Duan M. GPR120 Ameliorates Apoptosis and Inhibits the Production of Inflammatory Cytokines in Renal Tubular Epithelial Cells. Inflammation 2020; 44:493-505. [PMID: 33009637 DOI: 10.1007/s10753-020-01346-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is the most common complication of sepsis with a high mortality rate. In this study, we focus on the renal injury caused by the immune response of renal tubular epithelial cells and inflammation-induced renal tubular epithelial cell apoptosis. We studied the role of GRP120 in the inflammation and apoptosis of human renal cell line HK-2 and mouse primary renal tubular epithelial cells. GPR120 agonist GW9508 activated the GPR120 pathway. Inflammatory factors were detected using quantitative real-time PCR and enzyme-linked immunosorbent assay. Cell apoptosis experiments included the annexin V and PI double-staining method combined with flow cytometry, TUNEL method, and Western blot. The level of cytokines including TNF-α, IL-6, IL-1β, and iNOS was significantly decreased (P < 0.05) in HK-2 and TECs after the activation of the GPR120 pathway. Besides, the cell apoptosis of both cells increased. Overexpressed GPR120 and shGPR120 were established. Treatment with lipopolysaccharide (LPS) increased the level of cytokines including TNF-α, IL-6, IL-1β, and iNOS in HK-2 cell and TECs. Compared with control-LPS and negative control (NC)-LPS, the overexpression of GPR120 and shGPR120 could decrease and increase the level of secreted cytokines significantly (P < 0.05), respectively, after LPS-induced apoptosis. After H2O2- and LPS-induced apoptosis, respectively, compared with the control and NC groups, overexpressed GPR120 and shGPR120 could reduce and increase the expression of caspase-3, respectively. GPR120 could suppress the cellular immune response and apoptosis in renal tubular epithelial cells, thereby possibly protecting the kidney and relieving sepsis-induced AKI.
Collapse
Affiliation(s)
- Deyuan Zhi
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Meng Zhang
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Pei Liu
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|