1
|
Williams MJ, Klockars A, Eriksson A, Voisin S, Dnyansagar R, Wiemerslage L, Kasagiannis A, Akram M, Kheder S, Ambrosi V, Hallqvist E, Fredriksson R, Schiöth HB. The Drosophila ETV5 Homologue Ets96B: Molecular Link between Obesity and Bipolar Disorder. PLoS Genet 2016; 12:e1006104. [PMID: 27280443 PMCID: PMC4900636 DOI: 10.1371/journal.pgen.1006104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/13/2016] [Indexed: 12/24/2022] Open
Abstract
Several reports suggest obesity and bipolar disorder (BD) share some physiological and behavioural similarities. For instance, obese individuals are more impulsive and have heightened reward responsiveness, phenotypes associated with BD, while bipolar patients become obese at a higher rate and earlier age than people without BD; however, the molecular mechanisms of such an association remain obscure. Here we demonstrate, using whole transcriptome analysis, that Drosophila Ets96B, homologue of obesity-linked gene ETV5, regulates cellular systems associated with obesity and BD. Consistent with a role in obesity and BD, loss of nervous system Ets96B during development increases triacylglyceride concentration, while inducing a heightened startle-response, as well as increasing hyperactivity and reducing sleep. Of notable interest, mouse Etv5 and Drosophila Ets96B are expressed in dopaminergic-rich regions, and loss of Ets96B specifically in dopaminergic neurons recapitulates the metabolic and behavioural phenotypes. Moreover, our data indicate Ets96B inhibits dopaminergic-specific neuroprotective systems. Additionally, we reveal that multiple SNPs in human ETV5 link to body mass index (BMI) and BD, providing further evidence for ETV5 as an important and novel molecular intermediate between obesity and BD. We identify a novel molecular link between obesity and bipolar disorder. The Drosophila ETV5 homologue Ets96B regulates the expression of cellular systems with links to obesity and behaviour, including the expression of a conserved endoplasmic reticulum molecular chaperone complex known to be neuroprotective. Finally, a connection between the obesity-linked gene ETV5 and bipolar disorder emphasizes a functional relationship between obesity and BD at the molecular level. The World Health Organization suggests obesity is a major cause of poor health and is becoming the leading public health concern. Likewise, mood-based disorders, such as bipolar disorder, are one of the top ten causes of disability worldwide. There is evidence that obesity and bipolar disorder may be linked and that obesity may exacerbate bipolar disorder symptoms. For the first time, our work evidences a molecular-link between obesity and bipolar disorder. In humans the obesity-linked gene ETV5 was also associated with bipolar disorder. Using the model organism Drosophila melanogaster (the fruit fly) we show that the ETV5 homologue Ets96B regulates a series of genes known to be neuroprotective and inhibiting the expression of Ets96 in dopaminergic neurons induces phenotypes linked to obesity and bipolar disorder, including increased lipid storage, increased anxiety and reduced sleep. Our work will help to further the understanding of how these to disorders may interact.
Collapse
Affiliation(s)
- Michael J. Williams
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Anica Klockars
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anders Eriksson
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sarah Voisin
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Rohit Dnyansagar
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lyle Wiemerslage
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anna Kasagiannis
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mehwish Akram
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sania Kheder
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Valerie Ambrosi
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Emilie Hallqvist
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|