1
|
Kagoshima H, Ohnishi H, Yamamoto R, Yasumoto A, Tona Y, Nakagawa T, Omori K, Yamamoto N. EBF1 Limits the Numbers of Cochlear Hair and Supporting Cells and Forms the Scala Tympani and Spiral Limbus during Inner Ear Development. J Neurosci 2024; 44:e1060232023. [PMID: 38176908 PMCID: PMC10869149 DOI: 10.1523/jneurosci.1060-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Early B-cell factor 1 (EBF1) is a basic helix-loop-helix transcription factor essential for the differentiation of various tissues. Our single-cell RNA sequencing data suggest that Ebf1 is expressed in the sensory epithelium of the mouse inner ear. Here, we found that the murine Ebf1 gene and its protein are expressed in the prosensory domain of the inner ear, medial region of the cochlear duct floor, otic mesenchyme, and cochleovestibular ganglion. Ebf1 deletion in mice results in incomplete formation of the spiral limbus and scala tympani, increased number of cells in the organ of Corti and Kölliker's organ, and aberrant course of the spiral ganglion axons. Ebf1 deletion in the mouse cochlear epithelia caused the proliferation of SOX2-positive cochlear cells at E13.5, indicating that EBF1 suppresses the proliferation of the prosensory domain and cells of Kölliker's organ to facilitate the development of appropriate numbers of hair and supporting cells. Furthermore, mice with deletion of cochlear epithelium-specific Ebf1 showed poor postnatal hearing function. Our results suggest that Ebf1 is essential for normal auditory function in mammals.
Collapse
Affiliation(s)
- Hiroki Kagoshima
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ryosuke Yamamoto
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Akiyoshi Yasumoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yosuke Tona
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Otolaryngology, Kobe City Medical Center General Hospital, Hyogo 650-0047, Japan
| |
Collapse
|
2
|
Defourny J. Considering gene therapy to protect from X-linked deafness DFNX2 and associated neurodevelopmental disorders. IBRAIN 2022; 8:431-441. [PMID: 37786584 PMCID: PMC10529175 DOI: 10.1002/ibra.12068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/10/2022] [Accepted: 09/13/2022] [Indexed: 10/04/2023]
Abstract
Mutations and deletions in the gene or upstream of the gene encoding the POU3F4 transcription factor cause X-linked progressive deafness DFNX2 and additional neurodevelopmental disorders in humans. Hearing loss can be purely sensorineural or mixed, that is, with both conductive and sensorineural components. Affected males show anatomical abnormalities of the inner ear, which are jointly defined as incomplete partition type III. Current approaches to improve hearing and speech skills of DFNX2 patients do not seem to be fully effective. Owing to inner ear malformations, cochlear implantation is surgically difficult and may predispose towards severe complications. Even in cases where implantation is safely performed, hearing and speech outcomes remain highly variable among patients. Mouse models for DFNX2 deafness revealed that sensorineural loss could arise from a dysfunction of spiral ligament fibrocytes in the lateral wall of the cochlea, which leads to reduced endocochlear potential. Highly positive endocochlear potential is critical for sensory hair cell mechanotransduction and hearing. In this context, here, we propose to develop a therapeutic approach in male Pou3f4 -/y mice based on an adeno-associated viral (AAV) vector-mediated gene transfer in cochlear spiral ligament fibrocytes. Among a broad range of AAV vectors, AAV7 was found to show a strong tropism for the spiral ligament. Thus, we suggest that an AAV7-mediated delivery of Pou3f4 complementary DNA in the spiral ligament of Pou3f4 -/y mice could represent an attractive strategy to prevent fibrocyte degeneration and to restore normal cochlear functions and properties, including a positive endocochlear potential, before hearing loss progresses to profound deafness.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA‐Neurosciences, Unit of Cell and Tissue BiologyUniversity of Liège, C.H.U. B36LiègeBelgium
| |
Collapse
|
3
|
Kada S, Hamaguchi K, Ito J, Omori K, Nakagawa T. Bone Marrow Stromal Cells Accelerate Hearing Recovery via Regeneration or Maintenance of Cochlear Fibrocytes in Mouse Spiral Ligaments. Anat Rec (Hoboken) 2019; 303:478-486. [DOI: 10.1002/ar.24063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/14/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Shinpei Kada
- Department of Otolaryngology, Head and Neck SurgeryGraduate School of Medicine, Kyoto University Kyoto Japan
- Department of Otolaryngology, Head and Neck SurgeryNational Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Kiyomi Hamaguchi
- Department of Otolaryngology, Head and Neck SurgeryGraduate School of Medicine, Kyoto University Kyoto Japan
- Department of Otolaryngology, Head and Neck SurgeryShizuoka City Shizuoka Hospital Shizuoka Japan
| | - Juichi Ito
- Department of Otolaryngology, Head and Neck SurgeryGraduate School of Medicine, Kyoto University Kyoto Japan
- Shiga Medical Center Research Institute Moriyama Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck SurgeryGraduate School of Medicine, Kyoto University Kyoto Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck SurgeryGraduate School of Medicine, Kyoto University Kyoto Japan
| |
Collapse
|
4
|
Recovery of endocochlear potential after severe damage to lateral wall fibrocytes following acute cochlear energy failure. Neuroreport 2016; 27:1159-66. [DOI: 10.1097/wnr.0000000000000673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Tona Y, Sakamoto T, Nakagawa T, Adachi T, Taniguchi M, Torii H, Hamaguchi K, Kitajiri SI, Ito J. In vivo imaging of mouse cochlea by optical coherence tomography. Otol Neurotol 2014; 35:e84-9. [PMID: 24448302 DOI: 10.1097/mao.0000000000000252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
HYPOTHESIS Cochlear pathology can be evaluated in living animals using optical coherence tomography (OCT). BACKGROUND The current imaging methods available for the detailed analysis of cochlear pathology in a clinical setting provide only limited information. Thus, a cochlear imaging modality with high definition is needed for improving the diagnosis of cochlear pathology. OCT has been used in other fields for obtaining high-resolution subsurface images, and its use could potentially be extended to the analysis of cochlear pathogenesis. METHODS Slc26a4(-/-) mice, which generate endolymphatic hydrops, and their littermates were used in this study. Auditory function was monitored by the auditory brainstem responses (ABR). After the mice were placed under general anesthesia, OCT images of the cochlea were captured. The cochlea was subsequently dissected out and histologically evaluated. Three or 7 days later, the wild-type mice cochleae were visualized again. RESULTS In ABR assessments, Slc26a4(-/-) mice showed severe hearing loss, while no significant hearing loss was found in Slc26a4(+/-) or Slc26a4(+/+) mice. OCT demonstrated normal morphology in the cochlea of both Slc26a4(+/-) and Slc26a4(+/+) mice, including the location of Reissner's membrane. Meanwhile, in Slc26a4(-/-) mice, obvious dislocation of Reissner's membrane was observed, indicating severe endolymphatic hydrops. These findings in the OCT images were consistent with the histologic results for the cochlear morphology, as observed with hematoxylin and eosin staining. Three or 7 days later, wild-type cochleae were successfully visualized using OCT, and no otitis media or labyrinthitis was observed. CONCLUSION OCT can be applied in the detection of endolymphatic hydrops in living mice, indicating the potential of OCT for cochlear imaging analyses for clinical use in the near future.
Collapse
Affiliation(s)
- Yosuke Tona
- *Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto; †Adachi ENT Clinic, Kobe; and ‡Department of Otolaryngology, Tenri Hospital, Tenri, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mizutari K. Spontaneous recovery of cochlear fibrocytes after severe degeneration caused by acute energy failure. Front Pharmacol 2014; 5:198. [PMID: 25206337 PMCID: PMC4143613 DOI: 10.3389/fphar.2014.00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/11/2014] [Indexed: 12/03/2022] Open
Abstract
Cochlear fibrocytes in the lateral wall region play a critical role in the regulation of inner ear ion and fluid homeostasis, although these are non-sensory cells. Along with other non-sensory cells, fibrocytes in the spiral ligament have been reported to repopulate themselves after damage. However, the studies of regeneration of cochlear fibrocytes have been difficult because a suitable fibrocyte-specific degeneration model did not exist. Therefore, we analyzed cochlear fibrocytes using a rat model of acute cochlear energy failure induced by a mitochondrial toxin. This model is unique because hearing loss is caused by apoptosis of fibrocytes in the cochlear lateral wall not by damage to sensory cells. Although this model involves severe damage to the cochlear lateral wall, delayed spontaneous regeneration occurs without any treatment. Moreover, partial hearing recovery is accompanied by morphological remodeling of the cochlear lateral wall. Two hypotheses are conceivable regarding this spontaneous recovery of cochlear fibrocytes. One is that residual cochlear fibrocytes proliferate spontaneously, followed by remodeling of the functional region of the lateral wall. Another is that some foreign cells such as bone marrow-derived cells promote morphological and functional recovery of the lateral wall. Acceleration of the lateral wall recovery promoted by these mechanisms may be a new therapeutic strategy against hearing loss.
Collapse
Affiliation(s)
- Kunio Mizutari
- Department of Otolaryngology, National Defense Medical College, Saitama Japan
| |
Collapse
|
7
|
Tateya T, Imayoshi I, Tateya I, Hamaguchi K, Torii H, Ito J, Kageyama R. Hedgehog signaling regulates prosensory cell properties during the basal-to-apical wave of hair cell differentiation in the mammalian cochlea. Development 2013; 140:3848-57. [PMID: 23946445 DOI: 10.1242/dev.095398] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mechanosensory hair cells and supporting cells develop from common precursors located in the prosensory domain of the developing cochlear epithelium. Prosensory cell differentiation into hair cells or supporting cells proceeds from the basal to the apical region of the cochleae, but the mechanism and significance of this basal-to-apical wave of differentiation remain to be elucidated. Here, we investigated the role of Hedgehog (Hh) signaling in cochlear development by examining the effects of up- and downregulation of Hh signaling in vivo. The Hh effector smoothened (Smo) was genetically activated or inactivated specifically in the developing cochlear epithelium after prosensory domain formation. Cochleae expressing a constitutively active allele of Smo showed only one row of inner hair cells with no outer hair cells (OHCs); abnormal undifferentiated prosensory-like cells were present in the lateral compartment instead of OHCs and their adjacent supporting cells. This suggests that Hh signaling inhibits prosensory cell differentiation into hair cells or supporting cells and maintains their properties as prosensory cells. Conversely, in cochlea with the Smo conditional knockout (Smo CKO), hair cell differentiation was preferentially accelerated in the apical region. Smo CKO mice survived after birth, and exhibited hair cell disarrangement in the apical region, a decrease in hair cell number, and hearing impairment. These results indicate that Hh signaling delays hair cell and supporting cell differentiation in the apical region, which forms the basal-to-apical wave of development, and is required for the proper differentiation, arrangement and survival of hair cells and for hearing ability.
Collapse
Affiliation(s)
- Tomoko Tateya
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Kasagi H, Kuhara T, Okada H, Sueyoshi N, Kurihara H. Mesenchymal stem cell transplantation to the mouse cochlea as a treatment for childhood sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2013; 77:936-42. [PMID: 23561635 DOI: 10.1016/j.ijporl.2013.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE There is no treatment established for congenital sensorineural hearing loss because the majority of the cases are hereditary. Although congenital sensorineural hearing loss is thought to be hereditary, this hearing loss occur postnatally. We hypothesized that the transplantation of MSCs (mesenchymal stem cells) to the cochlea would be an effective therapy for stopping or delaying the progression of sensorineural hearing loss in childhood. METHODS Cultured mouse MSCs were labeled with EGFP (enhanced green fluorescence protein) using retroviruses. EGFP-MSCs were transplanted into the posterior semicircular canal of mice at 2-3 weeks (young group) and 24-26 weeks (adult group) of age by a novel perilymphatic perfusion technique. Engraftment of MSCs was evaluated immunohistologically at 1 week and 2 weeks after transplantation. RESULTS In young mice, migrated MSCs were detected in the cochlea tissue by immunofluorescence for EGFP and by immunohistochemistry for fibronectin. The differentiation of migrated MSCs into fibrocyte-like cells was demonstrated by immunofluorescence for connexin 26. There were no adverse effects on auditory function by MSC transplantation, and the auditory brain stem responses threshold did not significantly shift after surgery. In contrast, neither MSC migration nor differentiation was detected in the adult mice canal after MSC transplantation. CONCLUSION The bone marrow derived MSCs were successfully transplanted into the cochlea of young mice by the perilymphatic perfusion technique and were further differentiated into fibrocyte-like cells without any adverse effects on auditory function.
Collapse
Affiliation(s)
- Hiromi Kasagi
- Department of Otorhinolaryngology, Juntendo University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
9
|
Jongkamonwiwat N, Rivolta MN. The Development of a Stem Cell Therapy for Deafness. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
10
|
Role of PGE-type receptor 4 in auditory function and noise-induced hearing loss in mice. Neuropharmacology 2011; 62:1841-7. [PMID: 22198478 DOI: 10.1016/j.neuropharm.2011.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/16/2011] [Accepted: 12/07/2011] [Indexed: 12/18/2022]
Abstract
This study explored the physiological roles of PGE-type receptor 4 (EP4) in auditory function. EP4-deficient mice exhibited slight hearing loss and a reduction of distortion-product otoacoustic emissions (DPOAEs) with loss of outer hair cells (OHCs) in cochleae. After exposure to intense noise, these mice showed significantly larger threshold shifts of auditory brain-stem responses (ABRs) and greater reductions of DPOAEs than wild-type mice. A significant increase of OHC loss was confirmed morphologically in the cochleae of EP4-deficient mice. Pharmacological inhibition of EP4 had a similar effect to genetic deletion, causing loss of both hearing and OHCs in C57BL/6 mice, indicating a critical role for EP4 signaling in the maintenance of auditory function. Pharmacological activation of EP4 significantly protected OHCs against noise trauma, and attenuated noise-induced hearing loss in C57BL/6 mice. These findings suggest that EP4 signaling is necessary for the maintenance of cochlear physiological function and for cochlear protection against noise-induced damage, in particular OHCs. EP4 might therefore be an effective target for cochlear disease therapeutics.
Collapse
|
11
|
Late-phase recovery in the cochlear lateral wall following severe degeneration by acute energy failure. Brain Res 2011; 1419:1-11. [DOI: 10.1016/j.brainres.2011.08.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/26/2011] [Accepted: 08/24/2011] [Indexed: 11/24/2022]
|
12
|
Tateya T, Imayoshi I, Tateya I, Ito J, Kageyama R. Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development. Dev Biol 2011; 352:329-40. [PMID: 21300049 DOI: 10.1016/j.ydbio.2011.01.038] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/16/2010] [Accepted: 01/28/2011] [Indexed: 01/08/2023]
Abstract
Notch-mediated lateral inhibition has been reported to regulate auditory hair cell and supporting cell development from common precursors. While the Notch effector genes Hes1, Hes5 and Hey1 are expressed in the developing cochlea, inactivation of either of them causes only mild abnormality, suggesting their functional redundancy. To explore the roles of Hes/Hey genes in cochlear development, we examined compound heterozygous or homozygous mutant mice that lacked Hes1, Hes5 and Hey1 alleles. We found that a reduction in Hes/Hey gene dosage led to graded increase of hair cell formation. However, if at least one allele of Hes1, Hes5 or Hey1 was intact, excessive hair cells were accompanied by overproduction of supporting cells, suggesting that the hair cell increase does not occur at the expense of supporting cells, and that each Hes/Hey gene functions to induce supporting cells. By contrast, when all alleles of Hes1, Hes5 and Hey1 were inactivated, the number of hair cells increased more drastically, whereas that of supporting cells was unchanged compared with control, suggesting that supporting cell formation was balanced by their overproduction and fate conversion into hair cells. The increase of the cell numbers seemed to occur after the prosensory domain formation in the mutants because the proliferation state and the size of the prosensory domain were not affected. Thus, Hes1, Hes5 and Hey1 cooperatively inhibit hair cell formation, and one allele of Hes1, Hes5 or Hey1 is sufficient for supporting cell production probably by lateral inhibition in the sensory epithelium. Strikingly, Hes/Hey mutations lead to disorganized cell alignment and polarity and to hearing loss despite hair cell overproduction. These results suggest that Hes/Hey gene dosage is essential not only for generation of appropriate numbers of hair cells and supporting cells by controlling cell proliferation and lateral inhibition but also for the hearing ability by regulating the cell alignment and polarity.
Collapse
Affiliation(s)
- Tomoko Tateya
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
13
|
The Development of a Stem Cell Therapy for Deafness. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Hori R, Nakagawa T, Yamamoto N, Hamaguchi K, Ito J. Role of prostaglandin E receptor subtypes EP2 and EP4 in autocrine and paracrine functions of vascular endothelial growth factor in the inner ear. BMC Neurosci 2010; 11:35. [PMID: 20219142 PMCID: PMC2847564 DOI: 10.1186/1471-2202-11-35] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 03/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background The physiological effects of prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2) are mediated by the prostaglandin E receptor subtypes EP1, EP2, EP3, and EP4, and the respective agonists have been purified. PGE1 and PGE2 can increase the production of vascular endothelial growth factor (VEGF), particularly through EP2 and EP4. The biological effects of VEGF are mediated by the phosphotyrosine kinase receptors fms-related tyrosine kinase-1 (Flt-1) and fetal liver kinase-1 (Flk-1). Here we examined the effects of EP2 and EP4 agonists on the production of VEGF proteins and VEGF messenger RNAs (mRNAs) in the inner ear, using an enzyme-linked immunosorbent assay and the real-time quantitative reverse transcription-polymerase chain reaction, respectively. We also examined the localization of EP2, VEGF, Flt-1, and Flk-1 in the cochlea by immunohistochemistry. Results The expression of EP2 occurred in the cochlea, and the local application of an EP2 or EP4 agonist increased VEGF protein and VEGF mRNA levels in the inner ear. Furthermore, the intensity of the VEGF immunoreactivity in the spiral ganglion appeared to be increased by the local EP2 or EP4 agonist treatment. Immunoreactivity for Flt-1, and Flk-1 was found in the cochlear sensory epithelium, spiral ganglion, spiral ligament, and stria vascularis. Conclusions These findings demonstrate that EP2 and EP4 agonists stimulate VEGF production in the inner ear, particularly in the spiral ganglions. Moreover, the Flt-1 and Flk-1 expression observed in the present study suggests that VEGF has autocrine and paracrine actions in the cochlea. Thus, EP2 and EP4 might be involved in the mechanisms underlying the therapeutic effects of PGE1 on acute sensorineural hearing loss via VEGF production.
Collapse
Affiliation(s)
- Ryusuke Hori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kawaharacho 54, Shogoin, Sakyo-ku, 606-8507 Kyoto, Japan
| | | | | | | | | |
Collapse
|
15
|
Túnez I, Tasset I, Pérez-De La Cruz V, Santamaría A. 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington's disease: past, present and future. Molecules 2010; 15:878-916. [PMID: 20335954 PMCID: PMC6263191 DOI: 10.3390/molecules15020878] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/12/2010] [Accepted: 02/01/2010] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is an inheritable autosomal-dominant disorder whose causal mechanisms remain unknown. Experimental models have begun to uncover these pathways, thus helping to understand the mechanisms implicated and allowing for the characterization of potential targets for new therapeutic strategies. 3-Nitropropionic acid is known to produce in animals behavioural, biochemical and morphologic changes similar to those occurring in HD. For this reason, this phenotypic model is gaining attention as a valuable tool to mimick this disorder and further developing new therapies. In this review, we will focus on the past and present research of this molecule, to finally bring a perspective on what will be next in this promising field of study.
Collapse
Affiliation(s)
- Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Maimónides de Investigaciones Biomédicas de Córdoba, Universidad de Córdoba, Av. Menéndez Pidal s/n, 14004 Córdoba, Spain.
| | | | | | | |
Collapse
|
16
|
Ogita H, Nakagawa T, Sakamoto T, Inaoka T, Ito J. Transplantation of bone marrow-derived neurospheres into guinea pig cochlea. Laryngoscope 2010; 120:576-81. [DOI: 10.1002/lary.20776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|