1
|
Dahiya S, Dahiya R, Fuloria NK, Mourya R, Dahiya S, Fuloria S, Kumar S, Shrivastava J, Saharan R, Chennupati SV, Patel JK. Natural Bridged Bicyclic Peptide Macrobiomolecules from Celosia argentea and Amanita phalloides. Mini Rev Med Chem 2022; 22:1772-1788. [PMID: 35049431 DOI: 10.2174/1389557522666220113122117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Bridged peptide macrobicycles (BPMs) from natural resources belong to types of compounds that are not investigated fully in terms of their formation, pharmacological potential and stereo-chemical properties. This division of biologically active congeners with multiple circular rings, has merits over other varieties of peptide molecules. BPMs form one of the most hopeful grounds for establishment of drugs because of their close resemblance and biocompatibility to proteins, and these bio-actives are debated as feasible realistic tools in diverse biomedical applications. Despite huge potential, poor metabolic stability and cell permeability limit the therapeutic success of macrocyclic peptides. In this review, we have comprehensively explored major bicyclic peptides sourced from plants and mushrooms including βs-leucyl-tryptophano-histidine bridged and tryptophano-cysteine bridged peptide macrobicycles. The unique structural features, structure activity relationship, synthetic routes, bioproperties and therapeutic potential of the natural BPMs are also discussed.
Collapse
Affiliation(s)
- Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| | - Neeraj Kumar Fuloria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Rita Mourya
- Department of Pharmaceutical Chemistry, Lakshmi Narain College of Pharmacy, Bhopal, Madhya Pradesh, India
| | - Saurabh Dahiya
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Shivkanya Fuloria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Suresh Kumar
- Department of Pharmaceutical Chemistry, Bharat Institute of Pharmacy, Babain, Kurukshetra, Haryana, India
| | - Jyoti Shrivastava
- Department of Pharmaceutical Chemistry, The Oxford College of Pharmacy, Bangalore, Karnataka, India
| | - Renu Saharan
- Department of Pharmaceutics, M.M. College of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana, Am-bala, Haryana, India
| | - Suresh V Chennupati
- Department of Pharmacy, College of Medical and Health Sciences, Wollega University, P.O. Box 395, Nekemte, Ethiopia
| | - Jayvadan K Patel
- Department of Pharmaceutics, Nootan Pharmacy College, Faculty of Pharmacy, Sankalchand Patel University, Visnagar-384315, Mehsana, Gujarat, India
| |
Collapse
|
2
|
Lin LL, Yang F, Zhang DH, Hu C, Yang S, Chen XQ. ARHGAP10 inhibits the epithelial-mesenchymal transition of non-small cell lung cancer by inactivating PI3K/Akt/GSK3β signaling pathway. Cancer Cell Int 2021; 21:320. [PMID: 34174897 PMCID: PMC8236192 DOI: 10.1186/s12935-021-02022-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/14/2021] [Indexed: 01/13/2023] Open
Abstract
Background Rho GTPase activating protein 10 (ARHGAP10) has been implicated as an essential element in multiple cellular process, including cell migration, adhesion and actin cytoskeleton dynamic reorganization. However, the correlation of ARHGAP10 expression with epithelial–mesenchymal transition (EMT) in lung cancer cells is unclear and remains to be elucidated. Herein, we investigated the relationship between the trait of ARHGAP10 and non-small cell lung cancer (NSCLC) pathological process. Methods Immunohistochemistry was conducted to evaluate the expression of ARHGAP10 in NSCLC tissues. CCK-8 assays, Transwell assays, scratch assays were applied to assess cell proliferation, invasion and migration. The expression levels of EMT biomarkers and active molecules involved in PI3K/Akt/GSK3β signaling pathway were examined through immunofluorescence and Western blot. Results ARHGAP10 was detected to be lower expression in NSCLC tissues compared with normal tissues from individuals. Moreover, overexpression of ARHGAP10 inhibited migratory and invasive potentials of A549 and NCI-H1299 cells. In addition, ARHGAP10 directly mediated the process of EMT via PI3K/Akt/GSK3β pathway. Meanwhile, activation of the signaling pathway of insulin-like growth factors-1 (IGF-1) reversed ARHGAP10 overexpression regulated EMT in NSCLC cells. Conclusion ARHGAP10 inhibits the epithelial–mesenchymal transition in NSCLC via PI3K/Akt/GSK3β signaling pathway, suggesting agonist of ARHGAP10 may be an optional remedy for NSCLC patients than traditional opioids.
Collapse
Affiliation(s)
- Lan-Lan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China
| | - Fan Yang
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China
| | - Dong-Huan Zhang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China
| | - Cong Hu
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China
| | - Sheng Yang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China.
| | - Xiang-Qi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China.
| |
Collapse
|
3
|
Ahangarzadeh S, Kanafi MM, Hosseinzadeh S, Mokhtarzadeh A, Barati M, Ranjbari J, Tayebi L. Bicyclic peptides: types, synthesis and applications. Drug Discov Today 2019; 24:1311-1319. [PMID: 31102732 DOI: 10.1016/j.drudis.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/19/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
Bicyclic peptides form one of the most promising platforms for drug development owing to their biocompatibility, similarity and chemical diversity to proteins, and they are considered as a possible practical tool in various therapeutic and diagnostic applications. Bicyclic peptides are known to have the capability of being employed as an effective alternative to complex molecules, such as antibodies, or small molecules. This review provides a summary of the recent progress on the types, synthesis and applications of bicyclic peptides. More specifically, natural and synthetic bicyclic peptides are introduced with their different production methods and relevant applications, including drug targeting, imaging and diagnosis. Their uses as antimicrobial agents, as well as the therapeutic functions of different bicyclic peptides, are also discussed.
Collapse
Affiliation(s)
- Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad M Kanafi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| |
Collapse
|
4
|
Escue R, Kandasamy K, Parthasarathi K. Thrombin Induces Inositol Trisphosphate-Mediated Spatially Extensive Responses in Lung Microvessels. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:921-935. [PMID: 28188112 DOI: 10.1016/j.ajpath.2016.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
Activation of plasma membrane receptors initiates compartmentalized second messenger signaling. Whether this compartmentalization facilitates the preferential intercellular diffusion of specific second messengers is unclear. Toward this, the receptor-mediated agonist, thrombin, was instilled into microvessels in a restricted region of isolated blood-perfused mouse lungs. Subsequently, the thrombin-induced increase in endothelial F-actin was determined using confocal fluorescence microscopy. Increased F-actin was evident in microvessels directly treated with thrombin and in those located in adjoining thrombin-free regions. This increase was abrogated by inhibiting inositol trisphosphate-mediated calcium release with Xestospongin C (XeC). XeC also inhibited the thrombin-induced increase in the amplitude of endothelial cytosolic Ca2+ oscillations. Instillation of thrombin and XeC into adjacent restricted regions increased F-actin in microvessels in the thrombin-treated and adjacent regions but not in those in the XeC-treated region. Thus, inositol trisphosphate, and not calcium, diffused interendothelially to the spatially remote thrombin-free microvessels. Thus, activation of plasma membrane receptors increased the ambit of inflammatory responses via a second messenger different from that used by stimuli that induce cell-wide increases in second messengers. Thrombin however failed to induce the spatially extensive response in microvessels of mice lacking endothelial connexin43, suggesting a role for connexin43 gap junctions. Compartmental second messenger signaling and interendothelial communication define the specific second messenger involved in exacerbating proinflammatory responses to receptor-mediated agonists.
Collapse
Affiliation(s)
- Rachel Escue
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Kathirvel Kandasamy
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Kaushik Parthasarathi
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|