1
|
Jecko V, Garcia L, Doat E, Leconte V, Liguoro D, Cazalets JR, Guillaud E. Vestibulospinal reflexes elicited with a tone burst method are dependent on spatial orientation. PeerJ 2024; 12:e17056. [PMID: 38436036 PMCID: PMC10906260 DOI: 10.7717/peerj.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Balance involves several sensory modalities including vision, proprioception and the vestibular system. This study aims to investigate vestibulospinal activation elicited by tone burst stimulation in various muscles and how head position influences these responses. We recorded electromyogram (EMG) responses in different muscles (sternocleidomastoid-SCM, cervical erector spinae-ES-C, lumbar erector spinae-ES-L, gastrocnemius-G, and tibialis anterior-TA) of healthy participants using tone burst stimulation applied to the vestibular system. We also evaluated how head position affected the responses. Tone burst stimulation elicited reproducible vestibulospinal reflexes in the SCM and ES-C muscles, while responses in the distal muscles (ES-L, G, and TA) were less consistent among participants. The magnitude and polarity of the responses were influenced by the head position relative to the cervical spine. When the head was rotated or tilted, the polarity of the vestibulospinal responses changed, indicating the integration of vestibular and proprioceptive inputs in generating these reflexes. Overall, our study provides valuable insights into the complexity of vestibulospinal reflexes and their modulation by head position. However, the high variability in responses in some muscles limits their clinical application. These findings may have implications for future research in understanding vestibular function and its role in posture and movement control.
Collapse
Affiliation(s)
- Vincent Jecko
- Department of Neurosurgery A, University Hospital of Bordeaux, Bordeaux, France
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Léa Garcia
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Emilie Doat
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | - Dominique Liguoro
- Department of Neurosurgery A, University Hospital of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
2
|
Dietz V, Holliger NS, Christen A, Geissmann M, Filli L. Neural coordination of bilateral hand movements: evidence for an involvement of brainstem motor centres. J Physiol 2024; 602:397-412. [PMID: 38178603 DOI: 10.1113/jp285403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Bilateral hand movements are assumed to be coordinated by a neural coupling mechanism. Neural coupling is experimentally reflected in complex electromyographic (EMG) responses in the forearm muscles of both sides to unilateral electrical arm nerve stimulation (ES). The aim of this study was to examine a potential involvement of the reticulospinal system in neural coupling by the application of loud acoustic stimuli (LAS) known to activate neurons of this system. LAS, ES and combined LAS/ES were applied to healthy subjects during visually guided bilateral hand flexion-extension movements. Muscle responses to the different stimuli were evaluated by electrophysiological recordings. Unilateral electrical ulnar nerve stimulation resulted in neural coupling responses in the forearm extensors (FE) of both sides. Interestingly, LAS evoked bilateral EMG responses that were similar in their configuration to those induced by ES. The presence of startles was associated with a shift of the onset and enhanced amplitude of LAS-induced coupling-like responses. Upon combined LAS/ES application, ES facilitated ipsilateral startles and coupling-like responses. Modulation of coupling-like responses by startles, the similarity of the responses to ES and LAS, and their interaction following combined stimulation suggests that both responses are mediated by the reticulospinal system. Our findings provide novel indirect evidence that the reticulospinal system is involved in the neural coupling of hand movements. This becomes clinically relevant in subjects with a damaged corticospinal system where a dominant reticulospinal system leads to involuntary limb coupling, referred to as associated movements. KEY POINTS: Automatic coordination of hand movements is assumed to be mediated by a neural coupling mechanism reflected by bilateral reflex responses in forearm muscles to unilateral electrical arm nerve stimulation (ES). Loud acoustic stimuli (LAS) were applied to assess a potential involvement of the reticulospinal system in the neural coupling mechanism. LAS evoked a bilateral reflex response in the forearm extensors that was similar to the neural coupling response to ES, and which could be separated from the acoustic startle response. Combined application of LAS and ES resulted in a facilitation of startle and coupling-like responses ipsilateral to ES, thus indicating an interaction of afferences from both stimuli. These novel findings provide indirect evidence that the reticulospinal system is a key motor structure for the coupling of bilateral hand movements.
Collapse
Affiliation(s)
- Volker Dietz
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Nicole Sarah Holliger
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Andrin Christen
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Marina Geissmann
- Swiss Center for Movement Analysis (SCMA), Balgrist Campus AG, Zurich, Switzerland
| | - Linard Filli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Swiss Center for Movement Analysis (SCMA), Balgrist Campus AG, Zurich, Switzerland
| |
Collapse
|
3
|
Huang J, Tang X, Xu Y, Zhang C, Chen T, Yu Y, Mustain W, Allison J, Iversen MM, Rabbitt RD, Zhou W, Zhu H. Differential Activation of Canal and Otolith Afferents by Acoustic Tone Bursts in Rats. J Assoc Res Otolaryngol 2022; 23:435-453. [DOI: 10.1007/s10162-022-00839-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
|
4
|
McNerney KM, Kaliyappan K, Wack DS, Muthaiah VPK. The Influence of Motoric Maneuvers on Cervical Vestibular Evoked Myogenic Potentials (cVEMPs). J Am Acad Audiol 2022; 33:134-141. [PMID: 36216040 DOI: 10.1055/s-0041-1739535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND The cervical vestibular evoked myogenic potential (cVEMP) is a vestibular response that is produced by the saccule in response to intense, often low-frequency, short-duration auditory stimuli, and is typically recorded from a contracted sternocleidomastoid (SCM) muscle. Previous research has shown that the amplitude of the cVEMP is related to the amount of SCM electromyographic (EMG) activity. PURPOSE The aim of this study was to determine the influence of various remote motoric maneuvers on the amplitude of the cVEMP, as well as whether they influence the level of SCM EMG activity. RESEARCH DESIGN The cVEMP was recorded from the left SCM muscle to left ear stimulation, in response to the SCM condition, as well as three different motoric maneuvers (jaw clench, eye closure, and the Jendrassik maneuver). EMG activity was also varied between 50, 75, and 100% of maximal EMG activity. STUDY SAMPLE Data from 14 healthy subjects, with a mean age of 25.57 years (standard deviation = 5.93 years), was included in the present study. DATA COLLECTION AND ANALYSIS Mean latency and amplitude of the cVEMP were compared across the four conditions and varying magnitudes of EMG contraction. SPSS 26 was used to statistically analyze the results. RESULTS cVEMP latency did not vary across condition. cVEMP amplitude decreased with decreasing EMG magnitude. SCM contraction with jaw clench produced the largest increase in cVEMP amplitude; however, this condition was not significantly different from the SCM condition alone. SCM contraction with the Jendrassik maneuver produced a cVEMP amplitude that was similar and not statistically different from SCM contraction alone, and the addition of the eye closure maneuver to SCM contraction resulted in the lowest cVEMP amplitude, which was found to be statistically different from the standard SCM condition at 100 and 75% EMG activity. The amplitude relationship across the conditions was not found to vary with changes in EMG activity; however, a significant increase in EMG amplitude was found during the 50% muscle contraction condition when subjects performed the Jendrassik maneuver in addition to the standard SCM contraction. CONCLUSIONS The addition of the eye closure maneuver to SCM contraction resulted in a significant decrease in cVEMP amplitude, while the addition of the Jendrassik maneuver resulted in a significant increase in EMG activity at the lowest level of SCM activation (i.e., 50%). Additional research is necessary to determine how motoric maneuvers influence the cVEMP amplitude, and whether the results are also dependent on how SCM contraction is being produced (e.g., while supine vs. sitting).
Collapse
Affiliation(s)
| | - Kathiravan Kaliyappan
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - David S Wack
- Department of Speech-Language Pathology, SUNY Buffalo State, Buffalo, NY
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY
| | | |
Collapse
|
5
|
Clinard CG, Lawlor KJ, Thorne AP, Piker EG. Nonlinearity in bone-conducted amplitude-modulated cervical vestibular evoked myogenic potentials: Harmonic distortion products. J Neurophysiol 2022; 127:791-800. [PMID: 35171737 DOI: 10.1152/jn.00347.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Otolith organs of the balance system, the saccule and utricle, encode linear acceleration. Integrity of the saccule is commonly assessed using cervical vestibular evoked myogenic potentials (cVEMPs) arising from an inhibitory reflex along the vestibulospinal pathway. Conventional approaches to eliciting these responses use brief, transient sounds to elicit onset responses. Here we used long-duration amplitude-modulated (AM) tones to elicit cVEMPs (AMcVEMPs) and analyzed their spectral content for evidence of nonlinear processing consistent with known characteristics of vestibular hair cells. Twelve young adults (ages 21-25) with no hearing or vestibular pathologies participated in this study. AMcVEMPs were elicited by bone-conducted AM tones with a 500 Hz carrier frequency. Eighteen modulation frequencies were used between 7 and 403 Hz. All participants had robust distortion products at harmonics of the modulation frequency. Total harmonic distortion ranged from approximately 10 to 80%. AMcVEMPs contain harmonic distortion products consistent with vestibular hair cell nonlinearities, and this new approach to studying the otolith organs may provide a non-invasive, in vivo method to study nonlinearity of vestibular hair cells in humans.
Collapse
Affiliation(s)
- Christopher G Clinard
- Communication Sciences and Disorders, James Madison University, Harrisonburg, VA, United States
| | - Kerri J Lawlor
- Communication Sciences and Disorders, James Madison University, Harrisonburg, VA, United States
| | - Andrew P Thorne
- Communication Sciences and Disorders, James Madison University, Harrisonburg, VA, United States
| | - Erin G Piker
- Communication Sciences and Disorders, James Madison University, Harrisonburg, VA, United States
| |
Collapse
|
6
|
Gattie M, Lieven EVM, Kluk K. Weak Vestibular Response in Persistent Developmental Stuttering. Front Integr Neurosci 2021; 15:662127. [PMID: 34594189 PMCID: PMC8477904 DOI: 10.3389/fnint.2021.662127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
Vibrational energy created at the larynx during speech will deflect vestibular mechanoreceptors in humans (Todd et al., 2008; Curthoys, 2017; Curthoys et al., 2019). Vestibular-evoked myogenic potential (VEMP), an indirect measure of vestibular function, was assessed in 15 participants who stutter, with a non-stutter control group of 15 participants paired on age and sex. VEMP amplitude was 8.5 dB smaller in the stutter group than the non-stutter group (p = 0.035, 95% CI [−0.9, −16.1], t = −2.1, d = −0.8, conditional R2 = 0.88). The finding is subclinical as regards gravitoinertial function, and is interpreted with regard to speech-motor function in stuttering. There is overlap between brain areas receiving vestibular innervation, and brain areas identified as important in studies of persistent developmental stuttering. These include the auditory brainstem, cerebellar vermis, and the temporo-parietal junction. The finding supports the disruptive rhythm hypothesis (Howell et al., 1983; Howell, 2004) in which sensory inputs additional to own speech audition are fluency-enhancing when they coordinate with ongoing speech.
Collapse
Affiliation(s)
- Max Gattie
- Manchester Centre for Audiology and Deafness (ManCAD), The University of Manchester, Manchester, United Kingdom
| | - Elena V M Lieven
- Child Study Centre, The University of Manchester, Manchester, United Kingdom.,The ESRC International Centre for Language and Communicative Development (LuCiD), The University of Manchester, Manchester, United Kingdom
| | - Karolina Kluk
- Manchester Centre for Audiology and Deafness (ManCAD), The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Govender S, Rosengren SM. Quantifying the effects of electrode placement and montage on measures of cVEMP amplitude and muscle contraction. J Vestib Res 2020; 31:47-59. [PMID: 33325417 DOI: 10.3233/ves-200033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The cervical vestibular evoked myogenic potential (cVEMP) can be affected by the recording parameters used to quantify the response. OBJECTIVE We investigated the effects of electrode placement and montage on the variability and symmetry of sternocleidomastoid (SCM) contraction strength and cVEMP amplitude. METHODS We used inter-side asymmetries in electrode placement to mimic small clinical errors in twenty normal subjects. cVEMPs were recorded at three active electrode sites and referred to the distal SCM tendon (referential montages: upper, conventional and lower). Additional bipolar montages were constructed offline to measure SCM contraction strength using closely-spaced electrode pairs (bipolar montages: superior, lower and outer). RESULTS The conventional montage generally produced the largest cVEMP amplitudes (P < 0.001). SCM contraction strength was larger for referential montages than bipolar ones (P < 0.001). Inter-side electrode position errors produced large variations in cVEMP and SCM contraction strength asymmetries in some subjects, producing erroneous abnormal test results. CONCLUSION Recording locations affect cVEMP amplitude and SCM contraction strength. In most cases, small changes in electrode position had only minor effects but, in a minority of subjects, the different montages produced large changes in cVEMP and contraction amplitudes and asymmetry, potentially affecting test outcomes.
Collapse
Affiliation(s)
- Sendhil Govender
- Department of Neurological Sciences, Prince of Wales Hospital, Randwick, Sydney, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Sally M Rosengren
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Splenius capitis: sensitive target for the cVEMP in older and neurodegenerative patients. Eur Arch Otorhinolaryngol 2019; 276:2991-3003. [DOI: 10.1007/s00405-019-05582-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 01/09/2023]
|
9
|
Camp AJ, Gu C, Cushing SL, Gordon KA, Corneil BD. Splenius capitis is a reliable target for measuring cervical vestibular evoked myogenic potentials in adults. Eur J Neurosci 2017; 45:1212-1223. [DOI: 10.1111/ejn.13536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/11/2017] [Accepted: 01/30/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Aaron J. Camp
- Sydney Medical School; Bosch Institute; University of Sydney; Medical Foundation Building Parramatta Rd Sydney NSW 2006 Australia
| | - Chao Gu
- Department of Psychology; Brain and Mind Institute; University of Western Ontario; Toronto ON Canada
| | - Sharon L. Cushing
- Archie's Cochlear Implant Laboratory; The Hospital for Sick Children and Department Otolaryngology-Head and Neck Surgery; University of Toronto; Toronto ON Canada
| | - Karen A. Gordon
- Archie's Cochlear Implant Laboratory; The Hospital for Sick Children and Department Otolaryngology-Head and Neck Surgery; University of Toronto; Toronto ON Canada
| | - Brian D. Corneil
- Department of Psychology; Brain and Mind Institute; University of Western Ontario; Toronto ON Canada
- Department of Physiology and Pharmacology; Robarts Research Institute; University of Western Ontario; London ON Canada
| |
Collapse
|
10
|
Reply to the Commentary on Luis et al. "Spontaneous plugging of the horizontal semicircular canal with reversible canal dysfunction and recovery of vestibular evoked myogenic potentials". Otol Neurotol 2014; 35:379-83. [PMID: 24448300 DOI: 10.1097/mao.0000000000000198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|