1
|
Córdoba-Aguilar A, Nava-Sánchez A, González-Tokman DM, Munguía-Steyer R, Gutiérrez-Cabrera AE. Immune Priming, Fat Reserves, Muscle Mass and Body Weight of the House Cricket is Affected by Diet Composition. NEOTROPICAL ENTOMOLOGY 2016; 45:404-410. [PMID: 27037705 DOI: 10.1007/s13744-016-0391-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Some insect species are capable of producing an enhanced immune response after a first pathogenic encounter, a process called immune priming. However, whether and how such ability is driven by particular diet components (protein/carbohydrate) have not been explored. Such questions are sound given that, in general, immune response is dietary dependent. We have used adults of the house cricket Acheta domesticus L. (Orthoptera: Gryllidae) and exposed them to the bacteria Serratia marcescens. We first addressed whether survival rate after priming and nonpriming treatments is dietary dependent based on access/no access to proteins and carbohydrates. Second, we investigated how these dietary components affected fat reserves, muscle mass, and body weight, three key traits in insect fitness. Thus, we exposed adult house crickets to either a protein or a carbohydrate diet and measured the three traits. After being provided with protein, primed animals survived longer compared to the other diet treatments. Interestingly, this effect was also sex dependent with primed males having a higher survival than primed females when protein was supplemented. For the second experiment, protein-fed animals had more fat, muscle mass, and body weight than carbohydrate-fed animals. Although we are not aware of the immune component underlying immune priming, our results suggest that its energetic demand for its functioning and/or consequent survival requires a higher demand of protein with respect to carbohydrate. Thus, protein shortage can impair key survival-related traits related to immune and energetic condition. Further studies varying nutrient ratios should verify our results.
Collapse
Affiliation(s)
- A Córdoba-Aguilar
- Depto de Ecología Evolutiva, Instituto de Ecología, Univ Nacional Autónoma de México, Ciudad Universitaria, Mexico, D.F., Mexico.
| | - A Nava-Sánchez
- Depto de Ecología Evolutiva, Instituto de Ecología, Univ Nacional Autónoma de México, Ciudad Universitaria, Mexico, D.F., Mexico
| | - D M González-Tokman
- Depto de Ecología Evolutiva, Instituto de Ecología, Univ Nacional Autónoma de México, Ciudad Universitaria, Mexico, D.F., Mexico
- CONACyT Research Fellow, Instituto de Ecología, Xalapa, Mexico
| | - R Munguía-Steyer
- Unidad de Morfología y Función, Fac de Estudios Superiores Iztacala, Univ Nacional Autónoma de México, Tlalnepantla, Mexico
| | - A E Gutiérrez-Cabrera
- CONACyT Research Fellow, Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Flores-Villegas AL, Salazar-Schettino PM, Córdoba-Aguilar A, Gutiérrez-Cabrera AE, Rojas-Wastavino GE, Bucio-Torres MI, Cabrera-Bravo M. Immune defence mechanisms of triatomines against bacteria, viruses, fungi and parasites. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:523-532. [PMID: 26082354 DOI: 10.1017/s0007485315000504] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Triatomines are vectors that transmit the protozoan haemoflagellate Trypanosoma cruzi, the causative agent of Chagas disease. The aim of the current review is to provide a synthesis of the immune mechanisms of triatomines against bacteria, viruses, fungi and parasites to provide clues for areas of further research including biological control. Regarding bacteria, the triatomine immune response includes antimicrobial peptides (AMPs) such as defensins, lysozymes, attacins and cecropins, whose sites of synthesis are principally the fat body and haemocytes. These peptides are used against pathogenic bacteria (especially during ecdysis and feeding), and also attack symbiotic bacteria. In relation to viruses, Triatoma virus is the only one known to attack and kill triatomines. Although the immune response to this virus is unknown, we hypothesize that haemocytes, phenoloxidase (PO) and nitric oxide (NO) could be activated. Different fungal species have been described in a few triatomines and some immune components against these pathogens are PO and proPO. In relation to parasites, triatomines respond with AMPs, including PO, NO and lectin. In the case of T. cruzi this may be effective, but Trypanosoma rangeli seems to evade and suppress PO response. Although it is clear that three parasite-killing processes are used by triatomines - phagocytosis, nodule formation and encapsulation - the precise immune mechanisms of triatomines against invading agents, including trypanosomes, are as yet unknown. The signalling processes used in triatomine immune response are IMD, Toll and Jak-STAT. Based on the information compiled, we propose some lines of research that include strategic approaches of biological control.
Collapse
Affiliation(s)
- A L Flores-Villegas
- Departamento de Microbiología y Parasitología, Facultad de Medicina,Universidad Nacional Autónoma de México,Circuito Interior,Avenida Universidad 3000,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - P M Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina,Universidad Nacional Autónoma de México,Circuito Interior,Avenida Universidad 3000,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - A Córdoba-Aguilar
- Departamento de Ecología Evolutiva,Instituto de Ecología,Universidad Nacional Autónoma de México,Apdo. P. 70-275,Circuito Exterior,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - A E Gutiérrez-Cabrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - G E Rojas-Wastavino
- Departamento de Microbiología y Parasitología, Facultad de Medicina,Universidad Nacional Autónoma de México,Circuito Interior,Avenida Universidad 3000,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - M I Bucio-Torres
- Departamento de Microbiología y Parasitología, Facultad de Medicina,Universidad Nacional Autónoma de México,Circuito Interior,Avenida Universidad 3000,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - M Cabrera-Bravo
- Departamento de Microbiología y Parasitología, Facultad de Medicina,Universidad Nacional Autónoma de México,Circuito Interior,Avenida Universidad 3000,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| |
Collapse
|