Dayel MJ, Akin O, Landeryou M, Risca V, Mogilner A, Mullins RD. In silico reconstitution of actin-based symmetry breaking and motility.
PLoS Biol 2009;
7:e1000201. [PMID:
19771152 PMCID:
PMC2738636 DOI:
10.1371/journal.pbio.1000201]
[Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 08/12/2009] [Indexed: 11/19/2022] Open
Abstract
Computational modeling and experimentation in a model system for actin-based force generation explain how actin networks initiate and maintain directional movement.
Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system.
Networks of actin filaments provide the force that drives eukaryotic cell movement. In a model system for this kind of force generation, a spherical bead coated with an actin nucleating protein builds and rockets around on an actin “comet tail,” much like the tails observed in some cellular systems. How does a spherically symmetric bead break the symmetry of the actin coat and begin to polymerize actin in a directional manner? A previous theoretical model successfully explained how symmetry breaks, but suggested that the subsequent motion was driven by actin squeezing the bead forwards—a prediction refuted by experiment. To understand how motility occurs, we created a parsimonious computer model that predicted novel experimental behaviors, then performed new experiments inspired by the model and confirmed these predictions. Our model demonstrates how the elastic properties of the actin network explain not only symmetry breaking, but also the details of subsequent motion and how the bead maintains direction.
Collapse