1
|
Mason JH, Luo L, Reinwald Y, Taffetani M, Hallas-Potts A, Herrington CS, Srsen V, Lin CJ, Barroso IA, Zhang Z, Zhang Z, Ghag AK, Yang Y, Waters S, El Haj AJ, Bagnaninchi PO. Debiased ambient vibrations optical coherence elastography to profile cell, organoid and tissue mechanical properties. Commun Biol 2023; 6:543. [PMID: 37202417 DOI: 10.1038/s42003-023-04788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/31/2023] [Indexed: 05/20/2023] Open
Abstract
The role of the mechanical environment in defining tissue function, development and growth has been shown to be fundamental. Assessment of the changes in stiffness of tissue matrices at multiple scales has relied mostly on invasive and often specialist equipment such as AFM or mechanical testing devices poorly suited to the cell culture workflow.In this paper, we have developed a unbiased passive optical coherence elastography method, exploiting ambient vibrations in the sample that enables real-time noninvasive quantitative profiling of cells and tissues. We demonstrate a robust method that decouples optical scattering and mechanical properties by actively compensating for scattering associated noise bias and reducing variance. The efficiency for the method to retrieve ground truth is validated in silico and in vitro, and exemplified for key applications such as time course mechanical profiling of bone and cartilage spheroids, tissue engineering cancer models, tissue repair models and single cell. Our method is readily implementable with any commercial optical coherence tomography system without any hardware modifications, and thus offers a breakthrough in on-line tissue mechanical assessment of spatial mechanical properties for organoids, soft tissues and tissue engineering.
Collapse
Affiliation(s)
- Jonathan H Mason
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lu Luo
- Healthcare Technology Institute, University of Birmingham, Birmingham, UK
| | - Yvonne Reinwald
- Department of Engineering, Nottingham Trent University, Nottingham, UK
| | | | - Amelia Hallas-Potts
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - C Simon Herrington
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Vlastimil Srsen
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Chih-Jen Lin
- MRC Centre for Reproductive Health, The Univeristy of Edinburgh, Edinburgh, UK
| | - Inês A Barroso
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Zhihua Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Anita K Ghag
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Ying Yang
- Institute of Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
| | - Sarah Waters
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Alicia J El Haj
- Healthcare Technology Institute, University of Birmingham, Birmingham, UK.
| | - Pierre O Bagnaninchi
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Middendorf JM, Dugopolski C, Kennedy S, Blahut E, Cohen I, Bonassar LJ. Heterogeneous matrix deposition in human tissue engineered cartilage changes the local shear modulus and resistance to local construct buckling. J Biomech 2020; 105:109760. [PMID: 32276782 DOI: 10.1016/j.jbiomech.2020.109760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/05/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
Human tissue engineered cartilage is a promising solution for focal cartilage defects, but these constructs do not have the same local mechanical properties as native tissue. Most clinically relevant engineered cartilage constructs seed human chondrocytes onto a collagen scaffold, which buckles at low loads and strains. This buckling creates local regions of high strain that could cause cell death and damage the engineered tissue. Since human tissue engineered cartilage is commonly grown in-vivo prior to implantation, new matrix deposition could improve the local implant mechanics and prevent local tissue buckling. However, the relationship between local biochemical composition and the local mechanics or local buckling probability has never been quantified. Therefore, this study correlated the local biochemical composition of human tissue engineered cartilage constructs using Fourier transform infrared spectroscopy (FTIR) with the local shear modulus and local buckling probability. The local shear modulus and local buckling probability were obtained using a confocal elastography technique. The local shear modulus increased with increases in local aggrecan content in the interior region (inside the scaffold). A minimum amount of aggrecan was required to prevent local construct buckling at physiologic strains. Since the original scaffold was primarily composed of collagen, increases in collagen content due to new matrix deposition was minimal and had little effect on the mechanical properties. Thus, we concluded that aggrecan deposition inside the scaffold pores is the most effective way to improve the mechanical function and prevent local tissue damage in human tissue engineered cartilage constructs.
Collapse
Affiliation(s)
- Jill M Middendorf
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | - Itai Cohen
- Physics, Cornell University, Ithaca, NY, USA
| | - Lawrence J Bonassar
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, USA; Meinig School of Biomedical Engineering Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Heydarian A, Khorramymehr S, Vasaghi-Gharamaleki B. Short-term effects of X-ray on viscoelastic properties of epithelial cells. Proc Inst Mech Eng H 2019; 233:535-543. [DOI: 10.1177/0954411919837563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Examining the effects of ionizing radiation on the living cell is significant due to its usage in recent centuries. Investigations into the long- and short-term effects of ionizing radiation began simultaneously with its discovery. Previous studies were done on the effects of radiation on cell DNA or the biochemical cycle based on the electromagnetic radiation wavelength, intensity, and exposure time. Considering some dependent parameters like cell communication, the differentiation and the mechanical interactions of intercellular environment, and cell mechanical properties, the effects of ionizing radiation on the viscoelastic properties of cells seem to be important. The current research investigated the short-term biomechanical effects of ionizing radiation and examined the mechanical properties of cells using magnetic tweezer cytometry with nanomagnetic particles. To evaluate these effects, cells were incubated with nanomagnetic particles and then separated into controlled and irradiated groups. A 3 mGy cm2 X-ray was radiated to the irradiated group for 0.02 s. The dishes of both groups were inserted into magnetic tweezer cytometry for applying a magnetic force pulse, and the cell membrane displacement was detected by an image processing system. The creep response of the membrane was determined for viscoelastic model curve fitting. The frequency responses of the model for both groups were calculated. The results showed that radiation could decrease cell extensibility from 0.084 ± 0.001 to 0.019 ± 0.001 µm and change the storage and loss modulus as the indicator of the viscoelastic property of the material. This research explains that radiation could affect cellular mechanical properties.
Collapse
Affiliation(s)
- Ashkan Heydarian
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Siamak Khorramymehr
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
4
|
Karchner JP, Querido W, Kandel S, Pleshko N. Spatial correlation of native and engineered cartilage components at micron resolution. Ann N Y Acad Sci 2018; 1442:104-117. [PMID: 30058180 DOI: 10.1111/nyas.13934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Tissue engineering (TE) approaches are being widely investigated for repair of focal defects in articular cartilage. However, the amount and/or type of extracellular matrix (ECM) produced in engineered constructs does not always correlate with the resultant mechanical properties. This could be related to the specifics of ECM distribution throughout the construct. Here, we present data on the amount and distribution of the primary components of native and engineered cartilage (i.e., collagen, proteoglycan (PG), and water) using Fourier transform infrared imaging spectroscopy (FT-IRIS). These data permit visualization of matrix and water at 25 μm resolution throughout the tissues, and subsequent colocalization of these components using image processing methods. Native and engineered cartilage were cryosectioned at 80 μm for evaluation by FT-IRIS in the mid-infrared (MIR) and near-infrared (NIR) regions. PG distribution correlated strongly with water in native and engineered cartilage, supporting the binding of water to PG in both tissues. In addition, NIR-derived matrix peaks correlated significantly with MIR-derived collagen peaks, confirming the interpretation that these absorbances arise primarily from collagen and not PG. The combined use of MIR and NIR permits assessment of ECM and water spatial distribution at the micron level, which may aid in improved development of TE techniques.
Collapse
Affiliation(s)
- James P Karchner
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - Shital Kandel
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
O'Leary SA, White JL, Hu JC, Athanasiou KA. Biochemical and biomechanical characterisation of equine cervical facet joint cartilage. Equine Vet J 2018; 50:800-808. [DOI: 10.1111/evj.12845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 03/30/2018] [Indexed: 11/28/2022]
Affiliation(s)
- S. A. O'Leary
- Department of Biomedical Engineering; University of California; Davis California USA
| | - J. L. White
- Department of Biomedical Engineering; University of California; Davis California USA
| | - J. C. Hu
- Department of Biomedical Engineering; University of California; Davis California USA
| | - K. A. Athanasiou
- Department of Biomedical Engineering; University of California; Davis California USA
- Department of Biomedical Engineering; University of California; Irvine California USA
| |
Collapse
|
6
|
Ford AC, Chui WF, Zeng AY, Nandy A, Liebenberg E, Carraro C, Kazakia G, Alliston T, O'Connell GD. A modular approach to creating large engineered cartilage surfaces. J Biomech 2018; 67:177-183. [PMID: 29273221 PMCID: PMC5767151 DOI: 10.1016/j.jbiomech.2017.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Native articular cartilage has limited capacity to repair itself from focal defects or osteoarthritis. Tissue engineering has provided a promising biological treatment strategy that is currently being evaluated in clinical trials. However, current approaches in translating these techniques to developing large engineered tissues remains a significant challenge. In this study, we present a method for developing large-scale engineered cartilage surfaces through modular fabrication. Modular Engineered Tissue Surfaces (METS) uses the well-known, but largely under-utilized self-adhesion properties of de novo tissue to create large scaffolds with nutrient channels. Compressive mechanical properties were evaluated throughout METS specimens, and the tensile mechanical strength of the bonds between attached constructs was evaluated over time. Raman spectroscopy, biochemical assays, and histology were performed to investigate matrix distribution. Results showed that by Day 14, stable connections had formed between the constructs in the METS samples. By Day 21, bonds were robust enough to form a rigid sheet and continued to increase in size and strength over time. Compressive mechanical properties and glycosaminoglycan (GAG) content of METS and individual constructs increased significantly over time. The METS technique builds on established tissue engineering accomplishments of developing constructs with GAG composition and compressive properties approaching native cartilage. This study demonstrated that modular fabrication is a viable technique for creating large-scale engineered cartilage, which can be broadly applied to many tissue engineering applications and construct geometries.
Collapse
Affiliation(s)
- Audrey C Ford
- Department of Mechanical Engineering, University of California, Berkeley, United States
| | - Wan Fung Chui
- Department of Mechanical Engineering, University of California, Berkeley, United States
| | - Anne Y Zeng
- Department of Mechanical Engineering, University of California, Berkeley, United States
| | - Aditya Nandy
- Department of Mechanical Engineering, University of California, Berkeley, United States
| | - Ellen Liebenberg
- Department of Orthopaedic Surgery, University of California, San Francisco, United States
| | - Carlo Carraro
- Department of Chemical Engineering, University of California, Berkeley, United States
| | - Galateia Kazakia
- Department of Radiology, University of California, San Francisco, United States
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, United States
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, United States.
| |
Collapse
|
7
|
Bandeiras C, Completo A. A mathematical model of tissue-engineered cartilage development under cyclic compressive loading. Biomech Model Mechanobiol 2016; 16:651-666. [PMID: 27817048 DOI: 10.1007/s10237-016-0843-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022]
Abstract
In this work a coupled model of solute transport and uptake, cell proliferation, extracellular matrix synthesis and remodeling of mechanical properties accounting for the impact of mechanical loading is presented as an advancement of a previously validated coupled model for free-swelling tissue-engineered cartilage cultures. Tissue-engineering constructs were modeled as biphasic with a linear elastic solid, and relevant intrinsic mechanical stimuli in the constructs were determined by numerical simulation for use as inputs of the coupled model. The mechanical dependent formulations were derived from a calibration and parametrization dataset and validated by comparison of normalized ratios of cell counts, total glycosaminoglycans and collagen after 24-h continuous cyclic unconfined compression from another dataset. The model successfully fit the calibration dataset and predicted the results from the validation dataset with good agreement, with average relative errors up to 3.1 and 4.3 %, respectively. Temporal and spatial patterns determined for other model outputs were consistent with reported studies. The results suggest that the model describes the interaction between the simultaneous factors involved in in vitro tissue-engineered cartilage culture under dynamic loading. This approach could also be attractive for optimization of culture protocols, namely through the application to longer culture times and other types of mechanical stimuli.
Collapse
Affiliation(s)
- Cátia Bandeiras
- Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - António Completo
- Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
8
|
Bandeiras C, Completo A. Comparison of mechanical parameters between tissue-engineered and native cartilage: a numerical study. Comput Methods Biomech Biomed Engin 2015. [DOI: 10.1080/10255842.2015.1069565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- C. Bandeiras
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - A. Completo
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Bandeiras C, Completo A, Ramos A. Influence of the scaffold geometry on the spatial and temporal evolution of the mechanical properties of tissue-engineered cartilage: insights from a mathematical model. Biomech Model Mechanobiol 2015; 14:1057-70. [PMID: 25801173 DOI: 10.1007/s10237-015-0654-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/22/2015] [Indexed: 12/22/2022]
Abstract
The production of tissue-engineered cartilage in vitro with inhomogeneous mechanical properties is a problem yet to be solved. Different geometries have been studied to overcome this caveat; however, the reported measurements are limited to average values of some properties and qualitative measures of spatial distributions. We will apply a coupled model to extend knowledge about the introduction of a macrochannel in a scaffold by calculating spatiotemporal patterns for several interest variables related to the remodeling of the mechanical properties. Model parameters were estimated based on experimental data on the temporal patterns of glycosaminoglycans, collagen and compressive Young's modulus for channel-free constructs. The model reproduced the experimental data trends in both geometries, with experimental-numerical correlations between 0.84 and 0.97. The channel had a higher impact on the reduction in spatial heterogeneities and delay of saturation of core properties than in the improvement of average properties. Despite the possible improvement of cell densities for longer periods than 56 days, it is estimated that it will not cause further significant improvements of the mechanical properties. The degrees of spatial heterogeneity of the Young's modulus and permeability in the channeled geometry are 23 and 27 % of the channel-free values. While the average Young's modulus values are in the range of native cartilage, the permeabilities are one to three degrees of magnitude higher than the native cartilage, suggesting that limiting factors such as scaffold porosity and initial permeability are more relevant than scaffold geometry to effectively decrease the tissue permeability.
Collapse
Affiliation(s)
- Cátia Bandeiras
- Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal,
| | | | | |
Collapse
|
10
|
Khoshgoftar M, Ito K, van Donkelaar CC. The Influence of Cell-Matrix Attachment and Matrix Development on the Micromechanical Environment of the Chondrocyte in Tissue-Engineered Cartilage. Tissue Eng Part A 2014; 20:3112-21. [DOI: 10.1089/ten.tea.2013.0676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
11
|
Khoshgoftar M, Wilson W, Ito K, van Donkelaar CC. Influence of the Temporal Deposition of Extracellular Matrix on the Mechanical Properties of Tissue-Engineered Cartilage. Tissue Eng Part A 2014; 20:1476-85. [DOI: 10.1089/ten.tea.2013.0345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter Wilson
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Khoshgoftar M, Wilson W, Ito K, van Donkelaar CC. The Effects of Matrix Inhomogeneities on the Cellular Mechanical Environment in Tissue-Engineered Cartilage: An In Silico Investigation. Tissue Eng Part C Methods 2014; 20:104-15. [DOI: 10.1089/ten.tec.2012.0698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter Wilson
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
13
|
Jeon JE, Vaquette C, Klein TJ, Hutmacher DW. Perspectives in Multiphasic Osteochondral Tissue Engineering. Anat Rec (Hoboken) 2013; 297:26-35. [DOI: 10.1002/ar.22795] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Affiliation(s)
- June E. Jeon
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Cedryck Vaquette
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Travis J. Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive Atlanta, GA 30332, USA
| |
Collapse
|
14
|
Mohanraj B, Farran AJ, Mauck RL, Dodge GR. Time-dependent functional maturation of scaffold-free cartilage tissue analogs. J Biomech 2013; 47:2137-42. [PMID: 24262848 DOI: 10.1016/j.jbiomech.2013.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/12/2013] [Indexed: 01/28/2023]
Abstract
One of the most critical parameters in cartilage tissue engineering which influences the clinical success of a repair therapy is the ability to match the load-bearing capacity of the tissue as it functions in vivo. While mechanical forces are known to positively influence the development of cartilage matrix architecture, these same forces can induce long-term implant failure due to poor integration or structural deficiencies. As such, in the design of optimal repair strategies, it is critical to understand the timeline of construct maturation and how the elaboration of matrix correlates with the development of mechanical properties. We have previously characterized a scaffold-free method to engineer cartilage utilizing primary chondrocytes cultured at high density in hydrogel-coated culture vessels to promote the formation of a self-aggregating cell suspension that condenses to form a cartilage-like biomass, or cartilage tissue analog (CTA). Chondrocytes in these CTAs maintain their cellular phenotype and deposit extracellular matrix to form a construct that has characteristics similar to native cartilage; however, the mechanical integrity of CTAs had not yet been evaluated. In this study, we found that chondrocytes within CTAs produced a robust matrix of proteoglycans and collagen that correlated with increasing mechanical properties and decreasing cell-matrix ratios, leading to properties that approached that of native cartilage. These results demonstrate a unique approach to generating a cartilage-like tissue without the complicating factor of scaffold, while showing increased compressive properties and matrix characteristics consistent with other approaches, including scaffold-based constructs. To further improve the mechanics of CTAs, studies are currently underway to explore the effect of hydrodynamic loading and whether these changes would be reflective of in vivo maturation in animal models. The functional maturation of cartilage tissue analogs as described here support this engineered cartilage model for use in clinical and experimental applications for repair and regeneration in joint-related pathologies.
Collapse
Affiliation(s)
- Bhavana Mohanraj
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra J Farran
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia, PA 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia, PA 19104, USA; Collaborative Research Partner Acute Cartilage Injury Program of AO Foundation, Davos, Switzerland; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George R Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia, PA 19104, USA; Collaborative Research Partner Acute Cartilage Injury Program of AO Foundation, Davos, Switzerland.
| |
Collapse
|
15
|
Nagel T, Kelly DJ. The Composition of Engineered Cartilage at the Time of Implantation Determines the Likelihood of Regenerating Tissue with a Normal Collagen Architecture. Tissue Eng Part A 2013; 19:824-33. [DOI: 10.1089/ten.tea.2012.0363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas Nagel
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Environmental Informatics, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Hosseini SM, Wu Y, Ito K, van Donkelaar CC. The importance of superficial collagen fibrils for the function of articular cartilage. Biomech Model Mechanobiol 2013; 13:41-51. [DOI: 10.1007/s10237-013-0485-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
|
17
|
Khoshgoftar M, Wilson W, Ito K, van Donkelaar CC. Influence of tissue- and cell-scale extracellular matrix distribution on the mechanical properties of tissue-engineered cartilage. Biomech Model Mechanobiol 2012; 12:901-13. [PMID: 23160844 DOI: 10.1007/s10237-012-0452-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/30/2012] [Indexed: 12/23/2022]
Abstract
The insufficient load-bearing capacity of today's tissue- engineered (TE) cartilage limits its clinical application. Generally, cartilage TE studies aim to increase the extracellular matrix (ECM) content, as this is thought to determine the load-bearing properties of the cartilage. However, there are apparent inconsistencies in the literature regarding the correlation between ECM content and mechanical properties of TE constructs. In addition to the amount of ECM, the spatial inhomogeneities in ECM distribution at the tissue scale as well as at the cell scale may affect the mechanical properties of TE cartilage. The relative importance of such structural inhomogeneities on mechanical behavior of TE cartilage is unknown. The aim of the present study was, therefore, to theoretically elucidate the influence of these inhomogeneities on the mechanical behavior of chondrocyte-agarose TE constructs. A validated non-linear fiber-reinforced poro-elastic swelling cartilage model that can accommodate for effects of collagen reinforcement and swelling by proteoglycans was used. At the tissue scale, ECM was gradually varied from predominantly localized in the periphery of the TE construct toward an ECM-rich inner core. The effect of these inhomogeneities in relation to the total amount of ECM was also evaluated. At the cell scale, ECM was gradually varied from localized in the pericellular area, toward equally distributed throughout the interterritorial area. Results from the tissue-scale model indicated that localization of ECM in either the construct periphery or in the inner core may reduce construct stiffness compared with that of constructs with homogeneous ECM. Such effects are more significant at high ECM amounts. At the cell scale, localization of ECM around the cells significantly reduced the overall stiffness, even at low ECM amounts. The compressive stiffness gradually increased when ECM distribution became more homogeneous and the osmotic swelling pressure in the interterritorial area increased. We conclude that for the same amount of ECM content in TE cartilage constructs, superior mechanical properties can be achieved with more homogeneous ECM distribution at both tissue and cell scale. Inhomogeneities at the cell scale are more important than those at the tissue scale.
Collapse
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB , Eindhoven, The Netherlands,
| | | | | | | |
Collapse
|