1
|
Liu R, Su S, Xing J, Liu K, Zhao Y, Stangis M, Jacho DP, Yildirim-Ayan ED, Gatto-Weis CM, Chen B, Li X. Tumor removal limits prostate cancer cell dissemination in bone and osteoblasts induce cancer cell dormancy through focal adhesion kinase. J Exp Clin Cancer Res 2023; 42:264. [PMID: 37821954 PMCID: PMC10566127 DOI: 10.1186/s13046-023-02849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Disseminated tumor cells (DTCs) can enter a dormant state and cause no symptoms in cancer patients. On the other hand, the dormant DTCs can reactivate and cause metastases progression and lethal relapses. In prostate cancer (PCa), relapse can happen after curative treatments such as primary tumor removal. The impact of surgical removal on PCa dissemination and dormancy remains elusive. Furthermore, as dormant DTCs are asymptomatic, dormancy-induction can be an operational cure for preventing metastases and relapse of PCa patients. METHODS We used a PCa subcutaneous xenograft model and species-specific PCR to survey the DTCs in various organs at different time points of tumor growth and in response to tumor removal. We developed in vitro 2D and 3D co-culture models to recapitulate the dormant DTCs in the bone microenvironment. Proliferation assays, fluorescent cell cycle reporter, qRT-PCR, and Western Blot were used to characterize the dormancy phenotype. We performed RNA sequencing to determine the dormancy signature of PCa. A drug repurposing algorithm was applied to predict dormancy-inducing drugs and a top candidate was validated for the efficacy and the mechanism of dormancy induction. RESULTS We found DTCs in almost all mouse organs examined, including bones, at week 2 post-tumor cell injections. Surgical removal of the primary tumor reduced the overall DTC abundance, but the DTCs were enriched only in the bones. We found that osteoblasts, but not other cells of the bones, induced PCa cell dormancy. RNA-Seq revealed the suppression of mitochondrial-related biological processes in osteoblast-induced dormant PCa cells. Importantly, the mitochondrial-related biological processes were found up-regulated in both circulating tumor cells and bone metastases from PCa patients' data. We predicted and validated the dormancy-mimicking effect of PF-562,271 (PF-271), an inhibitor of focal adhesion kinase (FAK) in vitro. Decreased FAK phosphorylation and increased nuclear translocation were found in both co-cultured and PF-271-treated C4-2B cells, suggesting that FAK plays a key role in osteoblast-induced PCa dormancy. CONCLUSIONS Our study provides the first insights into how primary tumor removal enriches PCa cell dissemination in the bones, defines a unique osteoblast-induced PCa dormancy signature, and identifies FAK as a PCa cell dormancy gatekeeper.
Collapse
Affiliation(s)
- Ruihua Liu
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Jing Xing
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Ke Liu
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Mary Stangis
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Diego P Jacho
- Bioengineering Department, the University of Toledo, Toledo, OH, 43606, USA
| | | | - Cara M Gatto-Weis
- Department of Pathology, College of Medicine and Life Sciences, the University of Toledo, Toledo, OH, 43614, USA
| | - Bin Chen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Department of Pharmacology and Toxicology, Michigan State University, Grand Rapids, MI, 49503, USA.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
2
|
Shortridge C, Akbari Fakhrabadi E, Wuescher LM, Worth RG, Liberatore MW, Yildirim-Ayan E. Impact of Digestive Inflammatory Environment and Genipin Crosslinking on Immunomodulatory Capacity of Injectable Musculoskeletal Tissue Scaffold. Int J Mol Sci 2021; 22:1134. [PMID: 33498864 PMCID: PMC7866115 DOI: 10.3390/ijms22031134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
The paracrine and autocrine processes of the host response play an integral role in the success of scaffold-based tissue regeneration. Recently, the immunomodulatory scaffolds have received huge attention for modulating inflammation around the host tissue through releasing anti-inflammatory cytokine. However, controlling the inflammation and providing a sustained release of anti-inflammatory cytokine from the scaffold in the digestive inflammatory environment are predicated upon a comprehensive understanding of three fundamental questions. (1) How does the release rate of cytokine from the scaffold change in the digestive inflammatory environment? (2) Can we prevent the premature scaffold degradation and burst release of the loaded cytokine in the digestive inflammatory environment? (3) How does the scaffold degradation prevention technique affect the immunomodulatory capacity of the scaffold? This study investigated the impacts of the digestive inflammatory environment on scaffold degradation and how pre-mature degradation can be prevented using genipin crosslinking and how genipin crosslinking affects the interleukin-4 (IL-4) release from the scaffold and differentiation of naïve macrophages (M0). Our results demonstrated that the digestive inflammatory environment (DIE) attenuates protein retention within the scaffold. Over 14 days, the encapsulated protein released 46% more in DIE than in phosphate buffer saline (PBS), which was improved through genipin crosslinking. We have identified the 0.5 (w/v) genipin concentration as an optimal concentration for improved IL-4 released from the scaffold, cell viability, mechanical strength, and scaffold porosity, and immunomodulation studies. The IL-4 released from the injectable scaffold could differentiate naïve macrophages to an anti-inflammatory (M2) lineage; however, upon genipin crosslinking, the immunomodulatory capacity of the scaffold diminished significantly, and pro-inflammatory markers were expressed dominantly.
Collapse
Affiliation(s)
- Colin Shortridge
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA;
| | - Ehsan Akbari Fakhrabadi
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (E.A.F.); (M.W.L.)
| | - Leah M. Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (L.M.W.); (R.G.W.)
| | - Randall G. Worth
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (L.M.W.); (R.G.W.)
| | - Matthew W. Liberatore
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (E.A.F.); (M.W.L.)
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA;
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, USA
| |
Collapse
|
3
|
Hassan CR, Qin YX, Komatsu DE, Uddin SMZ. Utilization of Finite Element Analysis for Articular Cartilage Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3331. [PMID: 31614845 PMCID: PMC6829543 DOI: 10.3390/ma12203331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Abstract
Scaffold design plays an essential role in tissue engineering of articular cartilage by providing the appropriate mechanical and biological environment for chondrocytes to proliferate and function. Optimization of scaffold design to generate tissue-engineered cartilage has traditionally been conducted using in-vitro and in-vivo models. Recent advances in computational analysis allow us to significantly decrease the time and cost of scaffold optimization using finite element analysis (FEA). FEA is an in-silico analysis technique that allows for scaffold design optimization by predicting mechanical responses of cells and scaffolds under applied loads. Finite element analyses can potentially mimic the morphology of cartilage using mesh elements (tetrahedral, hexahedral), material properties (elastic, hyperelastic, poroelastic, composite), physiological loads by applying loading conditions (static, dynamic), and constitutive stress-strain equations (linear, porous-elastic, biphasic). Furthermore, FEA can be applied to the study of the effects of dynamic loading, material properties cell differentiation, cell activity, scaffold structure optimization, and interstitial fluid flow, in isolated or combined multi-scale models. This review covers recent studies and trends in the use of FEA for cartilage tissue engineering and scaffold design.
Collapse
Affiliation(s)
- Chaudhry R Hassan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - David E Komatsu
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Sardar M Z Uddin
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
4
|
Elsaadany M, Winters K, Adams S, Stasuk A, Ayan H, Yildirim-Ayan E. Equiaxial Strain Modulates Adipose-derived Stem Cell Differentiation within 3D Biphasic Scaffolds towards Annulus Fibrosus. Sci Rep 2017; 7:12868. [PMID: 28993681 PMCID: PMC5634474 DOI: 10.1038/s41598-017-13240-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022] Open
Abstract
Recurrence of intervertebral disc (IVD) herniation is the most important factor leading to chronic low back pain and subsequent disability after discectomy. Efficacious annulus fibrosus (AF) repair strategy that delivers cells and biologics to IVD injury site is needed to limit the progression of disc degeneration and promote disc self-regeneration capacities after discectomy procedures. In this study, a biphasic mechanically-conditioned scaffold encapsulated with human adipose-derived stem cells (ASCs) is studied as a potential treatment strategy for AF defects. Equiaxial strains and frequencies were applied to ASCs-encapsulated scaffolds to identify the optimal loading modality to induce AF differentiation. Equiaxial loading resulted in 2–4 folds increase in secretion of extracellular matrix proteins and the reorganization of the matrix fibers and elongations of the cells along the load direction. Further, the equiaxial load induced region-specific differentiation of ASCs within the inner and outer regions of the biphasic scaffolds. Gene expression of AF markers was upregulated with 5–30 folds within the equiaxially loaded biphasic scaffolds compared to unstrained samples. The results suggest that there is a specific value of equiaxial strain favorable to differentiate ASCs towards AF lineage and that ASCs-embedded biphasic scaffold can potentially be utilized to repair the AF defects.
Collapse
Affiliation(s)
| | - Kayla Winters
- Department of Bioengineering, University of Toledo, Toledo, OH, USA
| | - Sarah Adams
- Department of Bioengineering, University of Toledo, Toledo, OH, USA
| | - Alexander Stasuk
- Department of Bioengineering, University of Toledo, Toledo, OH, USA
| | - Halim Ayan
- Department of Bioengineering, University of Toledo, Toledo, OH, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, Toledo, OH, USA.
| |
Collapse
|