1
|
Ji X, Li H, Gong H, Wen G, Sun R. Analysis of material parameter uncertainty propagation in preoperative flap suture simulation. Comput Methods Biomech Biomed Engin 2024; 27:2131-2144. [PMID: 37865925 DOI: 10.1080/10255842.2023.2272009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023]
Abstract
Skin flap transplantation is the most commonly used method to repair tissue defect and cover the wound. In clinic, finite element method is often used to design the pre-operation scheme of flap suture. However, the material parameters of skin flap are uncertain due to experimental errors and differences in body parts. How to consider the influence of material parameter uncertainty on the mechanical response of flap suture in the finite element modeling is an urgent problem to be solved at present. Therefore, the influence of material parameter uncertainty propagation in skin flap suture simulation was studied, Firstly, the geometric model of clinical patient's hand wound was constructed by using reverse modeling technology, the patient's three-dimensional wound was unfolded into a flat surface by using curved surface expansion method, yielding a preliminary design contour for the patient's transplant flap. Based on the acquired patient wound geometry model, the finite element model of flap suture with different fiber orientations and different sizes was constructed in Abaqus, and the uncertainty propagation analysis method based on Monte Carlo simulation combined with surrogate model technology was further used to analyze the stress response of flap suture considering the uncertainty of material parameters. Results showed that the overall stress value was relatively lower when the average fiber orientation was 45°. which could be used as the optimal direction for the flap excision. when the preliminary design contour of the flap was scaled down within 90%, the stress value after flap suturing remained within a safe range.
Collapse
Affiliation(s)
- Xiaogang Ji
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi, Jiangsu, China
| | - Huabin Li
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Gong
- Department of Medicine, Soochow University, Suzhou, Jiangsu, China
- Department of Hand Surgery, Wuxi Ninth People's Hospital, Wuxi, Jiangsu, China
| | - Guangquan Wen
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Rong Sun
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Eftimie R, Rolin G, Adebayo OE, Urcun S, Chouly F, Bordas SPA. Modelling Keloids Dynamics: A Brief Review and New Mathematical Perspectives. Bull Math Biol 2023; 85:117. [PMID: 37855947 DOI: 10.1007/s11538-023-01222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Keloids are fibroproliferative disorders described by excessive growth of fibrotic tissue, which also invades adjacent areas (beyond the original wound borders). Since these disorders are specific to humans (no other animal species naturally develop keloid-like tissue), experimental in vivo/in vitro research has not led to significant advances in this field. One possible approach could be to combine in vitro human models with calibrated in silico mathematical approaches (i.e., models and simulations) to generate new testable biological hypotheses related to biological mechanisms and improved treatments. Because these combined approaches do not really exist for keloid disorders, in this brief review we start by summarising the biology of these disorders, then present various types of mathematical and computational approaches used for related disorders (i.e., wound healing and solid tumours), followed by a discussion of the very few mathematical and computational models published so far to study various inflammatory and mechanical aspects of keloids. We conclude this review by discussing some open problems and mathematical opportunities offered in the context of keloid disorders by such combined in vitro/in silico approaches, and the need for multi-disciplinary research to enable clinical progress.
Collapse
Affiliation(s)
- R Eftimie
- Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 25000, Besançon, France.
| | - G Rolin
- INSERM CIC-1431, CHU Besançon, F-25000, Besançon, France
- EFS, INSERM, UMR 1098 RIGHT, Université de Franche-Comté, F-25000, Besançon, France
| | - O E Adebayo
- Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 25000, Besançon, France
| | - S Urcun
- Institute for Computational Engineering, Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - F Chouly
- Institut de Mathématiques de Bourgogne, Université de Franche-Comté, 21078, Dijon, France
- Center for Mathematical Modelling and Department of Mathematical Engineering, University of Chile and IRL 2807 - CNRS, Santiago, Chile
- Departamento de Ingeniería Matemática, CI2MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - S P A Bordas
- Institute for Computational Engineering, Faculty of Science, Technology and Communication, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
3
|
Egberts G, Vermolen F, van Zuijlen P. Stability of a two-dimensional biomorphoelastic model for post-burn contraction. J Math Biol 2023; 86:59. [PMID: 36964257 PMCID: PMC10038978 DOI: 10.1007/s00285-023-01893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/26/2023]
Abstract
We consider the stability analysis of a two-dimensional model for post-burn contraction. The model is based on morphoelasticity for permanent deformations and combined with a chemical-biological model that incorporates cellular densities, collagen density, and the concentration of chemoattractants. We formulate stability conditions depending on the decay rate of signaling molecules for both the continuous partial differential equations-based problem and the (semi-)discrete representation. We analyze the difference and convergence between the resulting spatial eigenvalues from the continuous and semi-discrete problems.
Collapse
Affiliation(s)
- Ginger Egberts
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.
- Research Group Computational Mathematics (CMAT), Department of Mathematics and Statistics, University of Hasselt, Hasselt, Belgium.
| | - Fred Vermolen
- Research Group Computational Mathematics (CMAT), University of Hasselt, Hasselt, Belgium
- Data Science Institute (DSI), University of Hasselt, Hasselt, Belgium
| | - Paul van Zuijlen
- Burn Centre and Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, location VUmc, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Pediatric Surgical Centre, Emma Children's Hospital, Amsterdam UMC, location AMC and VUmc, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Egberts G, Desmoulière A, Vermolen F, van Zuijlen P. Sensitivity of a two-dimensional biomorphoelastic model for post-burn contraction. Biomech Model Mechanobiol 2023; 22:105-121. [PMID: 36229698 PMCID: PMC9957927 DOI: 10.1007/s10237-022-01634-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022]
Abstract
We consider a two-dimensional biomorphoelastic model describing post-burn scar contraction. This model describes skin displacement and the development of the effective Eulerian strain in the tissue. Besides these mechanical components, signaling molecules, fibroblasts, myofibroblasts, and collagen also play a significant role in the model. We perform a sensitivity analysis for the independent parameters of the model and focus on the effects on features of the relative surface area and the total strain energy density. We conclude that the most sensitive parameters are the Poisson's ratio, the equilibrium collagen concentration, the contraction inhibitor constant, and the myofibroblast apoptosis rate. Next to these insights, we perform a sensitivity analysis where the proliferation rates of fibroblasts and myofibroblasts are not the same. The impact of this model adaptation is significant.
Collapse
Affiliation(s)
- Ginger Egberts
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands. .,Research Group Computational Mathematics (CMAT), Department of Mathematics and Statistics, University of Hasselt, Hasselt, Belgium.
| | - Alexis Desmoulière
- grid.9966.00000 0001 2165 4861Department of Physiology, and EA 6309, Faculty of Pharmacy, University of Limoges, Limoges, France
| | - Fred Vermolen
- grid.12155.320000 0001 0604 5662Research Group Computational Mathematics (CMAT), Department of Mathematics and Statistics, University of Hasselt, Hasselt, Belgium
| | - Paul van Zuijlen
- grid.415746.50000 0004 0465 7034Burn Centre and Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Beverwijk, The Netherlands ,grid.509540.d0000 0004 6880 3010Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, location VUmc, Amsterdam Movement Sciences, Amsterdam, The Netherlands ,grid.5650.60000000404654431Pediatric Surgical Centre, Emma Children’s Hospital, Amsterdam UMC, location AMC and VUmc, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Egberts G, Schaaphok M, Vermolen F, Zuijlen PV. A Bayesian finite-element trained machine learning approach for predicting post-burn contraction. Neural Comput Appl 2022; 34:8635-8642. [PMID: 35125668 PMCID: PMC8801043 DOI: 10.1007/s00521-021-06772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/21/2021] [Indexed: 11/29/2022]
Abstract
Burn injuries can decrease the quality of life of a patient tremendously, because of esthetic reasons and because of contractions that result from them. In severe case, skin contraction takes place at such a large extent that joint mobility of a patient is significantly inhibited. In these cases, one refers to a contracture. In order to predict the evolution of post-wounding skin, several mathematical model frameworks have been set up. These frameworks are based on complicated systems of partial differential equations that need finite element-like discretizations for the approximation of the solution. Since these computational frameworks can be expensive in terms of computation time and resources, we study the applicability of neural networks to reproduce the finite element results. Our neural network is able to simulate the evolution of skin in terms of contraction for over one year. The simulations are based on 25 input parameters that are characteristic for the patient and the injury. One of such input parameters is the stiffness of the skin. The neural network results have yielded an average goodness of fit (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R^2$$\end{document}R2) of 0.9928 (± 0.0013). Further, a tremendous speed-up of 19354X was obtained with the neural network. We illustrate the applicability by an online medical App that takes into account the age of the patient and the length of the burn.
Collapse
Affiliation(s)
- Ginger Egberts
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
- Research Group Computational Mathematics(CMAT),Department of Mathematics and Statistics, University of Hasselt, Hasselt, Belgium
| | - Marianne Schaaphok
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
| | - Fred Vermolen
- Research Group Computational Mathematics(CMAT),Department of Mathematics and Statistics, University of Hasselt, Hasselt, Belgium
| | - Paul van Zuijlen
- Burn Centre and Department of Plastic,Reconstructive & Hand Surgery, Red Cross Hospital, Beverwijk, Netherlands
- Department of Plastic, Reconstructive & Hand Surgery, Amsterdam UMC, location VUmc, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Pediatric Surgical Centre, Emma Children’s Hospital, Amsterdam UMC, location AMC and VUmc, Amsterdam, Netherlands
| |
Collapse
|
6
|
Sohutskay DO, Buganza Tepole A, Voytik-Harbin SL. Mechanobiological wound model for improved design and evaluation of collagen dermal replacement scaffolds. Acta Biomater 2021; 135:368-382. [PMID: 34390846 DOI: 10.1016/j.actbio.2021.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Skin wounds are among the most common and costly medical problems experienced. Despite the myriad of treatment options, such wounds continue to lead to displeasing cosmetic outcomes and also carry a high burden of loss-of-function, scarring, contraction, or nonhealing. As a result, the need exists for new therapeutic options that rapidly and reliably restore skin cosmesis and function. Here we present a new mechanobiological computational model to further the design and evaluation of next-generation regenerative dermal scaffolds fabricated from polymerizable collagen. A Bayesian framework, along with microstructure and mechanical property data from engineered dermal scaffolds and autograft skin, were used to calibrate constitutive models for collagen density, fiber alignment and dispersion, and stiffness. A chemo-bio-mechanical finite element model including collagen, cells, and representative cytokine signaling was adapted to simulate no-fill, dermal scaffold, and autograft skin outcomes observed in a preclinical animal model of full-thickness skin wounds, with a focus on permanent contraction, collagen realignment, and cellularization. Finite element model simulations demonstrated wound cellularization and contraction behavior that was similar to that observed experimentally. A sensitivity analysis suggested collagen fiber stiffness and density are important scaffold design features for predictably controlling wound contraction. Finally, prospective simulations indicated that scaffolds with increased fiber dispersion (isotropy) exhibited reduced and more uniform wound contraction while supporting cell infiltration. By capturing the link between multi-scale scaffold biomechanics and cell-scaffold mechanochemical interactions, simulated healing outcomes aligned well with preclinical animal model data. STATEMENT OF SIGNIFICANCE: Skin wounds continue to be a significant burden to patients, physicians, and the healthcare system. Advancing the mechanistic understanding of the wound healing process, including multi-scale mechanobiological interactions amongst cells, the collagen scaffolding, and signaling molecules, will aide in the design of new skin restoration therapies. This work represents the first step towards integrating mechanobiology-based computational tools with in vitro and in vivo preclinical testing data for improving the design and evaluation of custom-fabricated collagen scaffolds for dermal replacement. Such an approach has potential to expedite development of new and more effective skin restoration therapies as well as improve patient-centered wound treatment.
Collapse
|
7
|
Egberts G, Vermolen F, van Zuijlen P. Stability of a one-dimensional morphoelastic model for post-burn contraction. J Math Biol 2021; 83:24. [PMID: 34355270 PMCID: PMC8342404 DOI: 10.1007/s00285-021-01648-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
To deal with permanent deformations and residual stresses, we consider a morphoelastic model for the scar formation as the result of wound healing after a skin trauma. Next to the mechanical components such as strain and displacements, the model accounts for biological constituents such as the concentration of signaling molecules, the cellular densities of fibroblasts and myofibroblasts, and the density of collagen. Here we present stability constraints for the one-dimensional counterpart of this morphoelastic model, for both the continuous and (semi-) discrete problem. We show that the truncation error between these eigenvalues associated with the continuous and semi-discrete problem is of order \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathcal {O}}}(h^2)$$\end{document}O(h2). Next we perform numerical validation to these constraints and provide a biological interpretation of the (in)stability. For the mechanical part of the model, the results show the components reach equilibria in a (non) monotonic way, depending on the value of the viscosity. The results show that the parameters of the chemical part of the model need to meet the stability constraint, depending on the decay rate of the signaling molecules, to avoid unrealistic results.
Collapse
Affiliation(s)
- Ginger Egberts
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands. .,Research Group Computational Mathematics (CMAT), Department of Mathematics and Statistics, University of Hasselt, Hasselt, Belgium.
| | - Fred Vermolen
- Research Group Computational Mathematics (CMAT), Department of Mathematics and Statistics, University of Hasselt, Hasselt, Belgium
| | - Paul van Zuijlen
- Burn Centre, Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Beverwijk, The Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Location VUmc, Amsterdam Mov ement Sciences, Amsterdam, The Netherlands.,Pediatric Surgical Centre, Emma Children's Hospital, Amsterdam UMC, Location AMC and VUmc, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Egberts G, Vermolen F, van Zuijlen P. Sensitivity and feasibility of a one-dimensional morphoelastic model for post-burn contraction. Biomech Model Mechanobiol 2021; 20:2147-2167. [PMID: 34331622 PMCID: PMC8595192 DOI: 10.1007/s10237-021-01499-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/18/2021] [Indexed: 01/13/2023]
Abstract
We consider a one-dimensional morphoelastic model describing post-burn scar contraction. Contraction can lead to a limited range of motion (contracture). Reported prevalence of burn scar contractures are 58.6% at 3-6 weeks and 20.9% at 12 months post-reconstructive surgery after burns. This model describes the displacement of the dermal layer of the skin and the development of the effective Eulerian strain in the tissue. Besides these components, the model also contains components that play a major role in the skin repair after trauma. These components are signaling molecules, fibroblasts, myofibroblasts, and collagen. We perform a sensitivity analysis for many parameters of the model and use the results for a feasibility study. In this study, we test whether the model is suitable for predicting the extent of contraction in different age groups. To this end, we conduct an extensive literature review to find parameter values. From the sensitivity analysis, we conclude that the most sensitive parameters are the equilibrium collagen concentration in the dermal layer, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. Further, although we can use the model to simulate significant distinct contraction densities in different age groups, our results differ from what is seen in the clinic. This particularly concerns children and elderly patients. In children we see more intense contractures if the burn injury occurs near a joint, because the growth induces extra forces on the tissue. Elderly patients seem to suffer less from contractures, possibly because of excess skin.
Collapse
Affiliation(s)
- Ginger Egberts
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands. .,Research Group Computational Mathematics (CMAT), Department of Mathematics and Statistics, University of Hasselt, Hasselt, Belgium.
| | - Fred Vermolen
- Research Group Computational Mathematics (CMAT), Department of Mathematics and Statistics, University of Hasselt, Hasselt, Belgium
| | - Paul van Zuijlen
- Burn Centre and Department of Plastic, Reconstructive & Hand Surgery, Red Cross Hospital, Beverwijk, The Netherlands.,Department of Plastic, Reconstructive & Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands.,Pediatric Surgical Centre, Emma Children's Hospital, Amsterdam UMC, location AMC and VUmc, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Uncertainty quantification on a spatial Markov-chain model for the progression of skin cancer. J Math Biol 2019; 80:545-573. [PMID: 31858196 PMCID: PMC7028824 DOI: 10.1007/s00285-019-01367-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/14/2019] [Indexed: 02/03/2023]
Abstract
A spatial Markov-chain model is formulated for the progression of skin cancer. The model is based on the division of the computational domain into nodal points, that can be in a binary state: either in 'cancer state' or in 'non-cancer state'. The model assigns probabilities for the non-reversible transition from 'non-cancer' state to the 'cancer state' that depend on the states of the neighbouring nodes. The likelihood of transition further depends on the life burden intensity of the UV-rays that the skin is exposed to. The probabilistic nature of the process and the uncertainty in the input data is assessed by the use of Monte Carlo simulations. A good fit between experiments on mice and our model has been obtained.
Collapse
|
10
|
Vermolen F, van Zuijlen P. Can Mathematics and Computational Modeling Help Treat Deep Tissue Injuries? Adv Wound Care (New Rochelle) 2019; 8:703-714. [PMID: 31750017 DOI: 10.1089/wound.2018.0892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/23/2019] [Indexed: 11/12/2022] Open
Abstract
Objective: Improving the treatment of deep tissue injuries, such as burns, by the use of computational modeling, instead of by animal experiments. Approach: Development of mathematical relations between various parameters and processes. Furthermore, solving the resulting problems through the use of numerical methods, such as finite-element methods. Results: Using our framework, we are able to simulate wound contraction in two dimensions, in which the wound area is followed over time. Our studies indicate that the degree of contraction can be reduced if the appearance of myofibroblasts is inhibited and if their apoptosis is enhanced. Furthermore, after skin grafting, splinting procedures are to be continued as long as TG-beta like growth factor levels are significant. Innovation: A morphoelasticity-based and computational-probabilistic framework for studying the evolution of burn injuries. Conclusion: The current framework is able to reproduce the time evolution of the wound area as observed in clinical results for skin grafts.
Collapse
Affiliation(s)
- Fred Vermolen
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
| | - Paul van Zuijlen
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Beverwijk, The Netherlands
- University Medical Center, Amsterdam, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Quantitative cell-based model predicts mechanical stress response of growing tumor spheroids over various growth conditions and cell lines. PLoS Comput Biol 2019; 15:e1006273. [PMID: 30849070 PMCID: PMC6538187 DOI: 10.1371/journal.pcbi.1006273] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 05/28/2019] [Accepted: 10/31/2018] [Indexed: 11/19/2022] Open
Abstract
Model simulations indicate that the response of growing cell populations on mechanical stress follows the same functional relationship and is predictable over different cell lines and growth conditions despite experimental response curves look largely different. We develop a hybrid model strategy in which cells are represented by coarse-grained individual units calibrated with a high resolution cell model and parameterized by measurable biophysical and cell-biological parameters. Cell cycle progression in our model is controlled by volumetric strain, the latter being derived from a bio-mechanical relation between applied pressure and cell compressibility. After parameter calibration from experiments with mouse colon carcinoma cells growing against the resistance of an elastic alginate capsule, the model adequately predicts the growth curve in i) soft and rigid capsules, ii) in different experimental conditions where the mechanical stress is generated by osmosis via a high molecular weight dextran solution, and iii) for other cell types with different growth kinetics from the growth kinetics in absence of external stress. Our model simulation results suggest a generic, even quantitatively same, growth response of cell populations upon externally applied mechanical stress, as it can be quantitatively predicted using the same growth progression function.
Collapse
|
12
|
Dynamic computational simulations for evaluating tissue loads applied by regulated negative pressure-assisted wound therapy (RNPT) system for treating large wounds. J Tissue Viability 2018; 27:101-113. [DOI: 10.1016/j.jtv.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 12/18/2022]
|