1
|
Dao T, Robinson DL, Doyle LW, Lee PVS, Olsen J, Kale A, Cheong JLY, Wark JD. Quantifying Bone Strength Deficits in Young Adults Born Extremely Preterm or Extremely Low Birth Weight. J Bone Miner Res 2023; 38:1800-1808. [PMID: 37850817 PMCID: PMC10946901 DOI: 10.1002/jbmr.4926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/28/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
The long-term bone health of young adults born extremely preterm (EP; <28 weeks' gestation) or extremely low birth weight (ELBW; <1000 g birth weight) in the post-surfactant era (since the early 1990s) is unclear. This study investigated their bone structure and estimated bone strength using peripheral quantitative computed tomography (pQCT)-based finite element modeling (pQCT-FEM). Results using this technique have been associated with bone fragility in several clinical settings. Participants comprised 161 EP/ELBW survivors (46.0% male) and 122 contemporaneous term-born (44.3% male), normal birth weight controls born in Victoria, Australia, during 1991-1992. At age 25 years, participants underwent pQCT at 4% and 66% of tibia and radius length, which was analyzed using pQCT-FEM. Groups were compared using linear regression and adjusted for height and weight. An interaction term between group and sex was added to assess group differences between sexes. Parameters measured included compressive stiffness (kcomp ), torsional stiffness (ktorsion ), and bending stiffness (kbend ). EP/ELBW survivors were shorter than the controls, but their weights were similar. Several unadjusted tibial pQCT-FEM parameters were lower in the EP/ELBW group. Height- and weight-adjusted ktorsion at 66% tibia remained lower in EP/ELBW (mean difference [95% confidence interval] -180 [-352, -8] Nm/deg). The evidence for group differences in ktorsion and kbend at 66% tibia was stronger among males than females (pinteractions <0.05). There was little evidence for group differences in adjusted radial models. Lower height- and weight-adjusted pQCT-FEM measures in EP/ELBW compared with controls suggest a clinically relevant increase in predicted long-term fracture risk in EP/ELBW survivors, particularly males. Future pQCT-FEM studies should utilize the tibial pQCT images because of the greater variability in the radius possibly related to lower measurement precision. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Thang Dao
- Melbourne Medical SchoolThe University of MelbourneMelbourneAustralia
| | - Dale Lee Robinson
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - Lex W Doyle
- Clinical SciencesMurdoch Children's Research InstituteMelbourneAustralia
- Department of Obstetrics and GynecologyUniversity of MelbourneMelbourneAustralia
- Newborn ResearchRoyal Women's HospitalMelbourneAustralia
- Department of PediatricsUniversity of MelbourneMelbourneAustralia
| | - Peter VS Lee
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - Joy Olsen
- Clinical SciencesMurdoch Children's Research InstituteMelbourneAustralia
| | - Ashwini Kale
- Department of Medicine, The Royal Melbourne HospitalThe University of MelbourneMelbourneAustralia
- Bone and Mineral Medicine, Department of Diabetes and EndocrinologyThe Royal Melbourne HospitalMelbourneAustralia
| | - Jeanie LY Cheong
- Clinical SciencesMurdoch Children's Research InstituteMelbourneAustralia
- Department of Obstetrics and GynecologyUniversity of MelbourneMelbourneAustralia
- Newborn ResearchRoyal Women's HospitalMelbourneAustralia
| | - John D Wark
- Department of Medicine, The Royal Melbourne HospitalThe University of MelbourneMelbourneAustralia
- Bone and Mineral Medicine, Department of Diabetes and EndocrinologyThe Royal Melbourne HospitalMelbourneAustralia
| |
Collapse
|
2
|
Koltun KJ, Sekel NM, Bird MB, Lovalekar M, Mi Q, Martin BJ, Nindl BC. Tibial Bone Geometry Is Associated With Bone Stress Injury During Military Training in Men and Women. Front Physiol 2022; 13:803219. [PMID: 35222074 PMCID: PMC8874318 DOI: 10.3389/fphys.2022.803219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Bone stress injuries (BSI) are a common musculoskeletal condition among exercising and military populations and present a major burden to military readiness. The purpose of this investigation was to determine whether baseline measures of bone density, geometry, and strength, as assessed via peripheral quantitative computed tomography (pQCT), are predictive of tibial BSI during Marine Officer Candidates School training. Tibial pQCT scans were conducted prior to the start of physical training (n = 504; Male n = 382; Female n = 122) to measure volumetric bone mineral density (vBMD), geometry, robustness, and estimates of bone strength. Bone parameters were assessed at three tibial sites including the distal metaphysis (4% of tibial length measured from the distal endplate), mid-diaphysis (38% of tibial length measured from the distal endplate), and proximal diaphysis (66% of tibial length measured from the distal endplate). Injury surveillance data was collected throughout training. Four percent (n = 21) of the sample were diagnosed with a BSI at any anatomical site during training, 10 injuries were of the tibia. Baseline bone parameters were then tested for associations with the development of a tibial BSI during training and it was determined that cortical bone measures at diaphyseal (38 and 66%) sites were significant predictors of a prospective tibial BSI. At the mid-diaphysis (38% site), in a simple model and after adjusting for sex, age, and body size, total area [Odds Ratio (OR): 0.987, 0.983], endosteal circumference (OR: 0.853, 0.857), periosteal circumference (OR: 0.863, 0.824), and estimated bending strength (SSI; OR: 0.998, 0.997) were significant predictors of a BSI during training, respectively, such that lower values were associated with an increased likelihood of injury. Similarly, at the proximal diaphysis (66% site), total area (OR: 0.989, 0.985), endosteal circumference (OR: 0.855, 0.854), periosteal circumference (OR: 0.867, 0.823), robustness (OR: 0.007, 0.003), and SSI (OR: 0.998, 0.998) were also significant predictors of BSI in the simple and adjusted models, respectively, such that lower values were associated with an increased likelihood of injury. Results from this investigation support that narrower bones, with reduced circumference, lower total area, and lower estimated strength are associated with increased risk for tibial BSI during military training.
Collapse
Affiliation(s)
- Kristen J. Koltun
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | | | | | | | | | |
Collapse
|
3
|
Jiang H, Robinson DL, Nankervis A, Garland SM, Callegari ET, Price S, Lee PVS, Wark JD. Bone Measures by Dual-Energy X-Ray Absorptiometry and Peripheral Quantitative Computed Tomography in Young Women With Type 1 Diabetes Mellitus. J Clin Densitom 2021; 24:259-267. [PMID: 32586681 DOI: 10.1016/j.jocd.2020.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022]
Abstract
Understanding bone fragility in young adult females with type 1 diabetes mellitus (T1DM) is of great clinical importance since the high fracture risk in this population remains unexplained. This study aimed to investigate bone health in young adult T1DM females by comparing relevant variables determined by dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT) at the tibia and pQCT-based finite element analysis (pQCT-FEA) between T1DM subjects (n = 21) and age-, height- and weight-matched controls (n = 63). Tibial trabecular density (lower by 7.1%; 228.8 ± 33.6 vs 246.4 ± 31.8 mg/cm3, p = 0.02) and cortical thickness (lower by 7.3%; 3.8 ± 0.5 vs 4.1 ± 0.5 cm, p = 0.03) by pQCT were significantly lower in T1DM subjects than in controls. Tibial shear stiffness by pQCT-FEA was also lower in T1DM subjects than in controls at both the 4% site (by 17.1%; 337.4 ± 75.5 vs 407.1 ± 75.4 kN/mm, p < 0.01) and 66% site (by 7.9%; 1113.0 ± 158.6 vs 1208.8 ± 161.8 kN/mm, p = 0.03). These differences remained statistically significant after adjustment for confounding factors. No difference between groups was observed in DXA-determined variables (all p ≥ 0.08), although there was a trend towards lower aBMD at the lumbar spine in T1DM subjects than in controls after adjustment for confounders (p = 0.053). These novel findings elicited using pQCT and pQCT-FEA suggest a clinically significant impact of T1DM on bone strength in young adult females with T1DM. Peripheral QCT and pQCT-FEA may provide more information than DXA alone on bone fragility in this population. Further longitudinal studies with a larger sample size are warranted to understand the evolution and causes of bone fragility in young T1DM females.
Collapse
Affiliation(s)
- Hongyuan Jiang
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Alison Nankervis
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Diabetes Service, Royal Women's Hospital, Melbourne, Australia; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Australia
| | - Suzanne M Garland
- Centre for Women's Infectious Diseases Research, Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia; Infection & Immunity, Murdoch Children's Research Institute, Melbourne, Australia
| | - Emma T Callegari
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Sarah Price
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Australia
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - John D Wark
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Bone and Mineral Medicine, Royal Melbourne Hospital, Melbourne, Australia; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Australia.
| |
Collapse
|
4
|
Buccino F, Colombo C, Vergani LM. A Review on Multiscale Bone Damage: From the Clinical to the Research Perspective. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1240. [PMID: 33807961 PMCID: PMC7962058 DOI: 10.3390/ma14051240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
The investigation of bone damage processes is a crucial point to understand the mechanisms of age-related bone fractures. In order to reduce their impact, early diagnosis is key. The intricate architecture of bone and the complexity of multiscale damage processes make fracture prediction an ambitious goal. This review, supported by a detailed analysis of bone damage physical principles, aims at presenting a critical overview of how multiscale imaging techniques could be used to implement reliable and validated numerical tools for the study and prediction of bone fractures. While macro- and meso-scale imaging find applications in clinical practice, micro- and nano-scale imaging are commonly used only for research purposes, with the objective to extract fragility indexes. Those images are used as a source for multiscale computational damage models. As an example, micro-computed tomography (micro-CT) images in combination with micro-finite element models could shed some light on the comprehension of the interaction between micro-cracks and micro-scale bone features. As future insights, the actual state of technology suggests that these models could be a potential substitute for invasive clinical practice for the prediction of age-related bone fractures. However, the translation to clinical practice requires experimental validation, which is still in progress.
Collapse
Affiliation(s)
| | | | - Laura Maria Vergani
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20154 Milano, Italy; (F.B.); (C.C.)
| |
Collapse
|
5
|
Jiang H, Robinson DL, Lee PVS, Krejany EO, Yates CJ, Hickey M, Wark JD. Loss of bone density and bone strength following premenopausal risk-reducing bilateral salpingo-oophorectomy: a prospective controlled study (WHAM Study). Osteoporos Int 2021; 32:101-112. [PMID: 32856124 DOI: 10.1007/s00198-020-05608-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
UNLABELLED Prophylactic oophorectomy is recommended for women at high risk for ovarian cancer, but the associated impact on bone health is of clinical concern. This prospective, controlled study demonstrated substantial loss of bone density and bone strength following surgical menopause. Postoperative hormone therapy alleviated, but not fully prevented, spinal bone loss. INTRODUCTION This prospective study investigated bone health in women following premenopausal oophorectomy. METHODS Dual-energy x-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), and pQCT-based finite element analysis (pQCT-FEA) were used to assess bone health between systemic hormone therapy (HT) users and non-users after premenopausal risk-reducing bilateral salpingo-oophorectomy (RRBSO) compared with premenopausal controls over 24-month follow-up. RESULTS Mean age was 42.4 ± 2.6 years (n = 30) for the surgery group and 40.2 ± 6.3 years for controls (n = 42), and baseline bone measures were similar between groups. Compromised bone variables were observed at 24 months after RRBSO, among which areal bone mineral density (aBMD) at the lumbar spine, tibial volumetric cortical density (Crt vBMD), and tibial bending stiffness (kbend) had decreased by 4.7%, 1.0%, and 12.1%, respectively (all p < 0.01). In non-HT users, significant losses in lumbar spine (5.8%), total hip (5.2%), femoral neck (6.0%) aBMD, tibial Crt vBMD (2.3%), and kbend (14.8%) were observed at 24 months (all p < 0.01). HT prevented losses in kbend, tibial Crt vBMD, and aBMD, except for modest 2.3% loss at the lumbar spine (p = 0.01). CONCLUSION This prospective, controlled study of bone health following RRBSO or premenopausal oophorectomy demonstrated substantial loss of bone density and bone strength following RRBSO. HT prevented loss of bone density and bone stiffness, although there was still a modest decrease in lumbar spine aBMD in HT users. These findings may inform decision-making about RRBSO and clinical management following premenopausal oophorectomy.
Collapse
Affiliation(s)
- H Jiang
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3050, Australia
| | - D L Robinson
- Department of Biomedical Engineering, University of Melbourne, Parkville, Australia
| | - P V S Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, Australia
| | - E O Krejany
- Department of Obstetrics and Gynaecology, University of Melbourne and Royal Women's Hospital, Parkville, Australia
| | - C J Yates
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3050, Australia
- Bone and Mineral Medicine, Royal Melbourne Hospital, Parkville, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia
| | - M Hickey
- Department of Obstetrics and Gynaecology, University of Melbourne and Royal Women's Hospital, Parkville, Australia
| | - J D Wark
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3050, Australia.
- Bone and Mineral Medicine, Royal Melbourne Hospital, Parkville, Australia.
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Identifying individuals at high fracture risk can be used to target those likely to derive the greatest benefit from treatment. This narrative review examines recent developments in using specific risk factors used to assess fracture risk, with a focus on publications in the last 3 years. RECENT FINDINGS There is expanding evidence for the recognition of individual clinical risk factors and clinical use of composite scores in the general population. Unfortunately, enthusiasm is dampened by three pragmatic randomized trials that raise questions about the effectiveness of widespread population screening using clinical fracture prediction tools given suboptimal participation and adherence. There have been refinements in risk assessment in special populations: men, patients with diabetes, and secondary causes of osteoporosis. New evidence supports the value of vertebral fracture assessment (VFA), high resolution peripheral quantitative CT (HR-pQCT), opportunistic screening using CT, skeletal strength assessment with finite element analysis (FEA), and trabecular bone score (TBS). The last 3 years have seen important developments in the area of fracture risk assessment, both in the research setting and translation to clinical practice. The next challenge will be incorporating these advances into routine work flows that can improve the identification of high risk individuals at the population level and meaningfully impact the ongoing crisis in osteoporosis management.
Collapse
Affiliation(s)
- William D Leslie
- Departments of Medicine and Radiology, University of Manitoba, 409 Tache Avenue, Winnipeg, Manitoba, R2H 2A6, Canada.
| | - Suzanne N Morin
- Department of Medicine, McGill University- McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Jiang H, Robinson DL, Yates CJ, Lee PVS, Wark JD. Peripheral quantitative computed tomography (pQCT)-based finite element analysis provides enhanced diagnostic performance in identifying non-vertebral fracture patients compared with dual-energy X-ray absorptiometry. Osteoporos Int 2020; 31:141-151. [PMID: 31720708 DOI: 10.1007/s00198-019-05213-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
Abstract
UNLABELLED Due to limitations of the predominant clinical method for diagnosing osteoporosis, an engineering model based on a dedicated CT scanner for bone density and structure was applied in fracture patients and controls. Improved diagnostic performance was observed, which supports its potential use in future research and clinical practice. INTRODUCTION Dual-energy X-ray absorptiometry (DXA), the predominant clinical method for diagnosing osteoporosis, has limitations in identifying individuals with increased fracture risk. Peripheral quantitative computed tomography (pQCT) provides additional information and can be used to generate finite element (FE) models from which bone strength properties can be estimated. We investigated the ability of pQCT-FE properties to distinguish peripheral low-trauma fracture patients from healthy controls, by comparison with DXA and standard pQCT. METHODS One hundred and eight fracture patients (77 females aged 67.7 ± 7.9 years, 31 males aged 69.7 ± 8.9 years) were recruited from a hospital fracture liaison service. One hundred and twenty healthy community controls (85 females aged 69.8 ± 8.5 years, 35 males aged 68.9 ± 7.2 years) were recruited. RESULTS Significant differences between groups were observed in pQCT-FE properties, especially at the 4% tibia site. Fracture odds increased most per standard deviation decrease in pQCT-FE at this location [shear stiffness estimate, kshear, in females, OR = 10.34, 95% CI (1.91, 43.98); bending stiffness estimate, kbend, in males, OR = 8.32, 95% CI (4.15, 33.84)]. Area under the receiver operating characteristics curve (AUROC) was observed to be highest with pQCT-FE properties at 4% the tibia site. In females, this was 0.83 for the pQCT-FE variable kshear, compared with 0.72 for DXA total hip bone density (TH aBMD) and 0.76 for pQCT tibia trabecular density (Trb vBMD); in males, this was 0.81 for the pQCT-FE variable kbend at the 4% tibia site, compared with 0.62 for TH aBMD and 0.71 for Trb vBMD. There were significant differences in AUROC between DXA and pQCT-FE variables in both females (p = 0.02) and males (p = 0.03), while no difference was observed in AUROC between primary pQCT and pQCT-FE variables. CONCLUSIONS pQCT-FE modeling can provide enhanced diagnostic performance compared with DXA and, given its moderate cost, may be useful in clinical settings.
Collapse
Affiliation(s)
- H Jiang
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - D L Robinson
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3052, Victoria, Australia
| | - C J Yates
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, 3052, Australia
- Bone and Mineral Medicine, Royal Melbourne Hospital, Melbourne, 3052, Victoria, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, 3052, Victoria, Australia
| | - P V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3052, Victoria, Australia
| | - J D Wark
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, 3052, Australia.
- Bone and Mineral Medicine, Royal Melbourne Hospital, Melbourne, 3052, Victoria, Australia.
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, 3052, Victoria, Australia.
| |
Collapse
|
8
|
Jiang H, Robinson DL, McDonald M, Lee PVS, Kontulainen SA, Johnston JD, Yates CJ, Wark JD. Predicting experimentally-derived failure load at the distal radius using finite element modelling based on peripheral quantitative computed tomography cross-sections (pQCT-FE): A validation study. Bone 2019; 129:115051. [PMID: 31472298 DOI: 10.1016/j.bone.2019.115051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023]
Abstract
Dual energy X-ray absorptiometry, the current clinical criterion method for osteoporosis diagnosis, has limitations in identifying individuals with increased fracture risk, especially at the distal radius. Peripheral quantitative computed tomography (pQCT) can provide volumetric bone density data, as well as information on bone geometry, which makes it possible to establish finite element (FE) models of the distal radius from which bone strength and stiffness can be calculated. In this study, we compared experimental mechanical failure load data of the forearm with pQCT- based FE (pQCT-FE) modelling properties. Sixteen cadaveric forearm specimens were experimentally loaded until failure. Estimated stiffness and strength variables of compression, shear, bending and torsion were calculated from pQCT-FE modelling of single cross-sections of 0.2 × 0.2 × 2.4 mm of the radius pQCT image. A moderate-to-strong coefficient of determination (r2) was observed between experimental failure load and pQCT-FE variables. The highest r2 was observed for bending stiffness (r2 = 0.83). This study validates the use of pQCT-FE in the assessment of distal radius bone strength for future studies.
Collapse
Affiliation(s)
- Hongyuan Jiang
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Matthew McDonald
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | | | - James D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Christopher J Yates
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Australia; Bone and Mineral Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - John D Wark
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Australia; Bone and Mineral Medicine, Royal Melbourne Hospital, Melbourne, Australia.
| |
Collapse
|