1
|
Xiong Z, Rouquier L, Chappard C, Bachy M, Huang X, Potier E, Bensidhoum M, Hoc T. A New Microarchitecture-Based Parameter to Predict the Micromechanical Properties of Bone Allografts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093349. [PMID: 37176232 PMCID: PMC10179528 DOI: 10.3390/ma16093349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Scaffolds are an essential component of bone tissue engineering. They provide support and create a physiological environment for cells to proliferate and differentiate. Bone allografts extracted from human donors are promising scaffolds due to their mechanical and structural characteristics. Bone microarchitecture is well known to be an important determinant of macroscopic mechanical properties, but its role at the microscopic, i.e., the trabeculae level is still poorly understood. The present study investigated linear correlations between microarchitectural parameters obtained from X-ray computed tomography (micro-CT) images of bone allografts, such as bone volume fraction (BV/TV), degree of anisotropy (DA), or ellipsoid factor (EF), and micromechanical parameters derived from micro-finite element calculations, such as mean axial strain (εz) and strain energy density (We). DAEF, a new parameter based on a linear combination of the two microarchitectural parameters DA and EF, showed a strong linear correlation with the bone mechanical characteristics at the microscopic scale. Our results concluded that the spatial distribution and the plate-and-rod structure of trabecular bone are the main determinants of the mechanical properties of bone at the microscopic level. The DAEF parameter could, therefore, be used as a tool to predict the level of mechanical stimulation at the local scale, a key parameter to better understand and optimize the mechanism of osteogenesis in bone tissue engineering.
Collapse
Affiliation(s)
- Zhuang Xiong
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
| | - Léa Rouquier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
| | | | - Manon Bachy
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
- Department of Pediatric Orthopedic Surgery, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne University, 75012 Paris, France
| | - Xingrong Huang
- Laboratory of Complex Systems, Ecole Centrale de Pékin, Beihang University, Beijing 100191, China
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
| | - Morad Bensidhoum
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
| | - Thierry Hoc
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, 75010 Paris, France
- Mechanical Department, MSGMGC, Ecole Centrale de Lyon, 69134 Ecully, France
| |
Collapse
|
2
|
Abstract
Bone is an outstanding, well-designed composite. It is constituted by a multi-level structure wherein its properties and behavior are dependent on its composition and structural organization at different length scales. The combination of unique mechanical properties with adaptive and self-healing abilities makes bone an innovative model for the future design of synthetic biomimetic composites with improved performance in bone repair and regeneration. However, the relation between structure and properties in bone is very complex. In this review article, we intend to describe the hierarchical organization of bone on progressively greater scales and present the basic concepts that are fundamental to understanding the arrangement-based mechanical properties at each length scale and their influence on bone’s overall structural behavior. The need for a better understanding of bone’s intricate composite structure is also highlighted.
Collapse
|