1
|
Liu J, Huang H, Xu P, Wang L, Liu Z, Fan Y. Damage evaluation and life prediction of pilot’s intervertebral disc based on continuum damage mechanics. INTERNATIONAL JOURNAL OF FATIGUE 2025; 193:108781. [DOI: 10.1016/j.ijfatigue.2024.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Falcoz C, Chaaban M, Paniagua C, Fusellier M, Guicheux J, Le Visage C, Nottelet B, Garric X, Pinese C. Design and Ex Vivo Evaluation of a PCLA Degradable Device To Improve Annulus Fibrosus Repair. ACS APPLIED BIO MATERIALS 2025; 8:1097-1107. [PMID: 39805260 DOI: 10.1021/acsabm.4c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
With a prevalence of over 90% in people over 50, intervertebral disc degeneration (IVDD) is a major health concern. This weakening of the intervertebral discs can lead to herniation, where the nucleus pulpus (NP) leaks through the surrounding Annulus Fibrosus (AF). Considering the limited self-healing capacity of AF tissue, an implant is needed to restore its architecture and function. Here, we developed a biomimetic electrospun nanofibrous biodegradable scaffold that could be potentially used to repair AF defects. To that aim, we synthesized copolymers and blends of ε-caprolactone and lactide to create poly(ε-caprolactone-co-lactide) (PCLA) and PCL/PLA scaffolds with 10, 20, or 30% PLA. Properties of the initial nanofibrous scaffolds and the impact of gamma irradiation sterilization on the mechanical, thermal, and in vitro degradation properties are assessed and discussed with respect to the AF application. It was shown that ovine AF cells colonize the nanofibrous layers with increased metabolic activity over time. As an outcome of these studies, two copolymers were chosen to design a device composed of a 3D nanofibrous stacked scaffold associated with a degradable anchoring system to maintain the scaffold in an AF defect. The implantability of this device was tested in a cadaveric sheep lumbar IVD.
Collapse
Affiliation(s)
- Chloé Falcoz
- Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
| | - Mansoor Chaaban
- Regenerative Medicine and Skeleton, RMeS, Oniris, CHU Nantes, INSERM, UMR 1229, University of Nantes, Nantes F-44000, France
| | - Cédric Paniagua
- Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
| | - Marion Fusellier
- Regenerative Medicine and Skeleton, RMeS, Oniris, CHU Nantes, INSERM, UMR 1229, University of Nantes, Nantes F-44000, France
| | - Jérôme Guicheux
- Regenerative Medicine and Skeleton, RMeS, Oniris, CHU Nantes, INSERM, UMR 1229, University of Nantes, Nantes F-44000, France
| | - Catherine Le Visage
- Regenerative Medicine and Skeleton, RMeS, Oniris, CHU Nantes, INSERM, UMR 1229, University of Nantes, Nantes F-44000, France
| | - Benjamin Nottelet
- Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| | - Coline Pinese
- Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| |
Collapse
|
3
|
Seifert J, Maiman D, Frazer LL, Shah A, Yoganandan N, King K, Sheehy JB, Paskoff G, Bentley T, Nicolella DP, Stemper BD. Mechanical Characterization of Non-degraded Porcine Annulus Fibrosus Material Properties. Ann Biomed Eng 2024:10.1007/s10439-024-03629-3. [PMID: 39499364 DOI: 10.1007/s10439-024-03629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE Porcine cervical spines are commonly used as a surrogate for human lumbar spines due to their similar anatomic and mechanical characteristics. Despite their use in spinal biomechanics research, porcine annulus fibrosus (AF) yield and ultimate properties have not been fully evaluated. This study sought to provide a novel dataset of elastic, yield, and ultimate properties of the porcine AF loaded in the circumferential direction. METHODS AF specimens were dissected from porcine cervical spines (C3/C4-C6/C7) oriented in the circumferential direction. Specimens were uniformly hydrated before being quasi-statically distracted to failure. Linear modulus, yield stress and strain, ultimate stress and strain, and ultimate strain energy density were calculated. Differences between spinal levels, circumferential regions, and radial regions were identified using multifactor ANOVA tests. RESULTS AF specimens showed a regionally dependent response between outer and inner radial regions, but not between spinal level and circumferential region. The outer region was significantly stronger and stiffer than the inner regions. In both outer and inner tissue, mechanical yield occurred at approximately 80% of their ultimate properties. CONCLUSION This study generated a novel dataset of elastic, yield, and ultimate properties of the porcine AF. The data can be used in future research that requires a robust database of healthy, non-degenerated AF mechanical properties, such as the development of future finite-element models.
Collapse
Affiliation(s)
- Jack Seifert
- Marquette University, Milwaukee, WI, USA
- Medical College of Wisconsin, Milwaukee, WI, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | | | | | - Alok Shah
- Medical College of Wisconsin, Milwaukee, WI, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Narayan Yoganandan
- Medical College of Wisconsin, Milwaukee, WI, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Keith King
- Naval Air Warfare Center Aircraft Division (NAWCAD), Patuxent River, MD, USA
| | - James B Sheehy
- Naval Air Warfare Center Aircraft Division (NAWCAD), Patuxent River, MD, USA
| | - Glenn Paskoff
- Naval Air Warfare Center Aircraft Division (NAWCAD), Patuxent River, MD, USA
| | | | | | - Brian D Stemper
- Marquette University, Milwaukee, WI, USA.
- Medical College of Wisconsin, Milwaukee, WI, USA.
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Liu Q, Zhang Q, Zhang CQ, Wang AG, Xu ZC, Song SX, Jia TJ, Li K. The effect of failure mechanics on the fatigue responses of lumbar intervertebral disc. J Biomech 2024; 176:112363. [PMID: 39413450 DOI: 10.1016/j.jbiomech.2024.112363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
Lumbar disc herniation is usually caused by the accumulation of long-term mechanical loads and sudden overload damage. Therefore, this study aims to illustrate how fatigue failure in lumbar spine segments is influenced by both cyclic loading magnitude and pre-existing damage. Eighty-six sheep intervertebral disc samples were divided into four groups to test the fatigue responses in healthy and damaged intervertebral discs. Both before and after fatigue loading, the specimens were performed on loading-unloading tests to analyze the viscoelasticity changes, while the specimens were performed on MRI examination to analyze the geometric and morphological changes. The Stress-Failure curve (SN curve) was examined, while the number of cycles to failure of damaged specimens was much smaller than that of healthy specimens at the same stress level during cyclic loading, and the relationship was approximately linear on a logarithmic scale. In addition, the healthy specimens will not accumulate fatigue failure if the compression force remains below 50% of the ultimate compressive tolerance (UTC). Before and after fatigue loading, the loading-unloading curves do not coincide and show obvious strain-rate-dependent viscoelastic characteristics, while the elastic modulus of the damaged specimen is significantly smaller. For magnetic resonance imaging, morphological changes included the changes of nucleus pulposus (NP) shape and area, while fatigue has a more significant effect on ruptured and herniated disc specimens. The dissipated energy of the intervertebral discs under cyclic loading was then calculated based on viscoelastic constitutive equations, which show that the load and preexisting damage both have significant effects on the dissipation rate.
Collapse
Affiliation(s)
- Qing Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), PR China; Department of Mechanics, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin 300354, PR China; National Key Laboratory of Vehicle Power System, Tianjin 300350, PR China
| | - Qi Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), PR China
| | - Chun-Qiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), PR China
| | - Ai-Guo Wang
- Affiliated Hospital of Tianjin Academia Sinica, Tianjin 300120, PR China
| | - Zhao-Cheng Xu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), PR China
| | - Si-Xue Song
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), PR China
| | - Tong-Ju Jia
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), PR China
| | - Kun Li
- Tianjin Key Laboratory of Film Electronic and Communication Device, Tianjin University of Technology, Tianjin 300384, PR China.
| |
Collapse
|
5
|
Feki F, Taktak R, Haddar N, Moulart M, Zaïri F, Zaïri F. Overloading effect on the osmo-viscoelastic and recovery behavior of the intervertebral disc. Proc Inst Mech Eng H 2024; 238:430-437. [PMID: 38480472 DOI: 10.1177/09544119241232286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In vitro studies investigating the effect of high physiological compressive loads on the intervertebral disc mechanics as well as on its recovery are rare. Moreover, the osmolarity effect on the disc viscoelastic behavior following an overloading is far from being studied. This study aims to determine whether a compressive loading-unloading cycle exceeding physiological limits could be detrimental to the cervical disc, and to examine the chemo-mechanical dependence of this overloading effect. Cervical functional spine units were subjected to a compressive loading-unloading cycle at a high physiological level (displacement of 2.5 mm). The overloading effect on the disc viscoelastic behavior was evaluated through two relaxation tests conducted before and after cyclic loading. Afterward, the disc was unloaded in a saline bath during a rest period, and its recovery response was assessed by a third relaxation test. The chemo-mechanical coupling in the disc response was further examined by repeating this protocol with three different saline concentrations in the external fluid bath. It was found that overloading significantly alters the disc viscoelastic response, with changes statistically dependent on osmolarity conditions. The applied hyper-physiological compressive cycle does not cause damage since the disc recovers its original viscoelastic behavior following a rest period. Osmotic loading only influences the loading-unloading response; specifically, increasing fluid osmolarity leads to a decrease in disc relaxation after the applied cycle. However, the disc recovery is not impacted by the osmolarity of the external fluid.
Collapse
Affiliation(s)
- Faten Feki
- Materials Engineering and Environment Laboratory (LGME), ENIS, Sfax University, Sfax, Tunisia
| | - Rym Taktak
- Laboratory of Advanced Material (LMA), ENIS, Sfax University, Sfax, Tunisia
| | - Nader Haddar
- Materials Engineering and Environment Laboratory (LGME), ENIS, Sfax University, Sfax, Tunisia
| | | | - Fahmi Zaïri
- Université de Lille, IMT Nord Europe, JUNIA, Université d'Artois, ULR 4515 - Laboratoire de Génie Civil et géo-Environnement, Lille, France
| | - Fahed Zaïri
- Ramsay Générale de Santé, Hôpital privé Le Bois, Lille, France
| |
Collapse
|
6
|
El Melhat AM, Youssef ASA, Zebdawi MR, Hafez MA, Khalil LH, Harrison DE. Non-Surgical Approaches to the Management of Lumbar Disc Herniation Associated with Radiculopathy: A Narrative Review. J Clin Med 2024; 13:974. [PMID: 38398287 PMCID: PMC10888666 DOI: 10.3390/jcm13040974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Lumbar disc herniation associated with radiculopathy (LDHR) is among the most frequent causes of spine-related disorders. This condition is triggered by irritation of the nerve root caused by a herniated disc. Many non-surgical and surgical approaches are available for managing this prevalent disorder. Non-surgical treatment approaches are considered the preferred initial management methods as they are proven to be efficient in reducing both pain and disability in the absence of any red flags. The methodology employed in this review involves an extensive exploration of recent clinical research, focusing on various non-surgical approaches for LDHR. By exploring the effectiveness and patient-related outcomes of various conservative approaches, including physical therapy modalities and alternative therapies, therapists gain valuable insights that can inform clinical decision-making, ultimately contributing to enhanced patient care and improved outcomes in the treatment of LDHR. The objective of this article is to introduce advanced and new treatment techniques, supplementing existing knowledge on various conservative treatments. It provides a comprehensive overview of the current therapeutic landscape, thereby suggesting pathways for future research to fill the gaps in knowledge. Specific to our detailed review, we identified the following interventions to yield moderate evidence (Level B) of effectiveness for the conservative treatment of LDHR: patient education and self-management, McKenzie method, mobilization and manipulation, exercise therapy, traction (short-term outcomes), neural mobilization, and epidural injections. Two interventions were identified to have weak evidence of effectiveness (Level C): traction for long-term outcomes and dry needling. Three interventions were identified to have conflicting or no evidence (Level D) of effectiveness: electro-diagnostic-based management, laser and ultrasound, and electrotherapy.
Collapse
Affiliation(s)
- Ahmed M. El Melhat
- Department of Physical Therapy for Musculoskeletal Disorders and Their Surgeries, Faculty of Physical Therapy, Cairo University, Cairo 12613, Egypt;
- Department of Physical Therapy, Faculty of Health Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon (M.R.Z.); (M.A.H.); (L.H.K.)
| | - Ahmed S. A. Youssef
- Basic Science Department, Faculty of Physical Therapy, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Moustafa R. Zebdawi
- Department of Physical Therapy, Faculty of Health Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon (M.R.Z.); (M.A.H.); (L.H.K.)
| | - Maya A. Hafez
- Department of Physical Therapy, Faculty of Health Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon (M.R.Z.); (M.A.H.); (L.H.K.)
| | - Lamia H. Khalil
- Department of Physical Therapy, Faculty of Health Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon (M.R.Z.); (M.A.H.); (L.H.K.)
| | | |
Collapse
|
7
|
Sun Z, Sun Y, Mi C. Comprehensive modeling of annulus fibrosus: From biphasic refined characterization to damage accumulation under viscous loading. Acta Biomater 2024; 174:228-244. [PMID: 38070844 DOI: 10.1016/j.actbio.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The annulus fibrosus (AF), a permeable, hydrated, and fiber-reinforced soft tissue, exhibits complex responses influenced by fluid pressure, osmotic pressure, and structural mechanics. Existing models struggle to comprehensively represent these intricate interactions and the heterogeneous solid responses within the AF. Additionally, the mechanisms driving differential damage accumulation between non-degenerative and degenerative intervertebral discs remain poorly understood. In this study, we introduce a biphasic-swelling damage model for the AF. We conceptually develop and rigorously validate this model through tissue-level tests employing various loading modes, consistently aligning model predictions with experimental data. Leveraging parametric geometric algorithms and custom Python scripts, we construct models simulating both non-degenerative and degenerative discs. Following calibration, we subject these models to viscous loading protocols. Our findings reveal the posterior AF's susceptibility to damage, contingent upon loading rate and water content. We elucidate the underlying mechanisms by examining the temporal evolution of fluid pressure, osmotic pressure, and the regionally dependent fiber network. This research presents a highly accurate model of the AF, providing valuable insights into disc damage. Future research endeavors should expand this model to incorporate ionic transport and diffusion, enabling a more profound exploration of intervertebral disc mechanobiology. This comprehensive model contributes to a better understanding of AF behavior and may inform therapeutic strategies for disc-related pathologies. STATEMENT OF SIGNIFICANCE: This research presents a comprehensive model of the annulus fibrosus (AF), a crucial component of the intervertebral disc that provides structural support and resists deformation. The study introduces a biphasic-swelling damage model for the AF and validates it through tissue-level tests. The model accounts for fluid pressure, osmotic pressure, and matrix mechanics, providing a more accurate representation of the AF's behavior. The study also investigates the differential damage accumulation between non-degenerative and degenerative discs, shedding light on the mechanisms driving disc degeneration. The findings have significant implications for medical treatments and interventions, as they highlight the posterior AF's susceptibility to damage. This research is of great interest to readers interested in biomechanics, tissue engineering, and medical treatments for disc degeneration.
Collapse
Affiliation(s)
- Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yueli Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200032, China
| | - Changwen Mi
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
8
|
Liu Q, Liang XF, Wang AG, Liu Y, Jia TJ, Li K, Zhang CQ. Failure mechanical properties of lumbar intervertebral disc under high loading rate. J Orthop Surg Res 2024; 19:15. [PMID: 38167031 PMCID: PMC10763340 DOI: 10.1186/s13018-023-04424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lumbar disc herniation (LDH) is the main clinical cause of low back pain. The pathogenesis of lumbar disc herniation is still uncertain, while it is often accompanied by disc rupture. In order to explore relationship between loading rate and failure mechanics that may lead to lumbar disc herniation, the failure mechanical properties of the intervertebral disc under high rates of loading were analyzed. METHOD Bend the lumbar motion segment of a healthy sheep by 5° and compress it to the ultimate strength point at a strain rate of 0.008/s, making a damaged sample. Within the normal strain range, the sample is subjected to quasi-static loading and high loading rate at different strain rates. RESULTS For healthy samples, the stress-strain curve appears collapsed only at high rates of compression; for damaged samples, the stress-strain curves collapse both at quasi-static and high-rate compression. For damaged samples, the strengthening stage becomes significantly shorter as the strain rate increases, indicating that its ability to prevent the destruction is significantly reduced. For damaged intervertebral disc, when subjected to quasi-static or high rates loading until failure, the phenomenon of nucleus pulposus (NP) prolapse occurs, indicating the occurrence of herniation. When subjected to quasi-static loading, the AF moves away from the NP, and inner AF has the greatest displacement; when subjected to high rates loading, the AF moves closer to the NP, and outer AF has the greatest displacement. The Zhu-Wang-Tang (ZWT) nonlinear viscoelastic constitutive model was used to describe the mechanical behavior of the intervertebral disc, and the fitting results were in good agreement with the experimental curve. CONCLUSION Experimental results show that, both damage and strain rate have a significant effect on the mechanical behavior of the disc fracture. The research work in this article has important theoretical guiding significance for preventing LDH in daily life.
Collapse
Affiliation(s)
- Qing Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300354, People's Republic of China
- Department of Mechanics, Tianjin University, Tianjin, 300354, People's Republic of China
- Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin, 300354, People's Republic of China
| | - Xiao-Feng Liang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300354, People's Republic of China
| | - Ai-Guo Wang
- Affiliated Hospital of Tianjin Academia Sinica, Tianjin, 300120, People's Republic of China
| | - Ying Liu
- Affiliated Hospital of Tianjin Academia Sinica, Tianjin, 300120, People's Republic of China
| | - Tong-Ju Jia
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300354, People's Republic of China
| | - Kun Li
- Tianjin Key Laboratory of Film Electronic and Communication Device, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Chun-Qiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300354, People's Republic of China
| |
Collapse
|
9
|
Rahman T, Tavana S, Baxan N, Raftery KA, Morgan G, Schaer TP, Smith N, Moore A, Bull J, Stevens MM, Newell N. Quantifying internal intervertebral disc strains to assess nucleus replacement device designs: a digital volume correlation and ultra-high-resolution MRI study. Front Bioeng Biotechnol 2023; 11:1229388. [PMID: 37849982 PMCID: PMC10577660 DOI: 10.3389/fbioe.2023.1229388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction: Nucleus replacement has been proposed as a treatment to restore biomechanics and relieve pain in degenerate intervertebral discs (IVDs). Multiple nucleus replacement devices (NRDs) have been developed, however, none are currently used routinely in clinic. A better understanding of the interactions between NRDs and surrounding tissues may provide insight into the causes of implant failure and provide target properties for future NRD designs. The aim of this study was to non-invasively quantify 3D strains within the IVD through three stages of nucleus replacement surgery: intact, post-nuclectomy, and post-treatment. Methods: Digital volume correlation (DVC) combined with 9.4T MRI was used to measure strains in seven human cadaveric specimens (42 ± 18 years) when axially compressed to 1 kN. Nucleus material was removed from each specimen creating a cavity that was filled with a hydrogel-based NRD. Results: Nucleus removal led to loss of disc height (12.6 ± 4.4%, p = 0.004) which was restored post-treatment (within 5.3 ± 3.1% of the intact state, p > 0.05). Nuclectomy led to increased circumferential strains in the lateral annulus region compared to the intact state (-4.0 ± 3.4% vs. 1.7 ± 6.0%, p = 0.013), and increased maximum shear strains in the posterior annulus region (14.6 ± 1.7% vs. 19.4 ± 2.6%, p = 0.021). In both cases, the NRD was able to restore these strain values to their intact levels (p ≥ 0.192). Discussion: The ability of the NRD to restore IVD biomechanics and some strain types to intact state levels supports nucleus replacement surgery as a viable treatment option. The DVC-MRI method used in the present study could serve as a useful tool to assess future NRD designs to help improve performance in future clinical trials.
Collapse
Affiliation(s)
- Tamanna Rahman
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Department of Mechanical Engineering, Biomechanics Group, Imperial College London, London, United Kingdom
| | - Saman Tavana
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Department of Mechanical Engineering, Biomechanics Group, Imperial College London, London, United Kingdom
| | - Nicoleta Baxan
- Biological Imaging Centre, Central Biomedical Services, Imperial College London, London, United Kingdom
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kay A. Raftery
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - George Morgan
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Thomas P. Schaer
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Nigel Smith
- Division of Surgery and Interventional Science, University College London, Stanmore, United Kingdom
| | - Axel Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Department of Materials and Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Jonathan Bull
- Neurosurgery, BARTS Health NHS Trust, London, United Kingdom
| | - Molly M. Stevens
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Department of Materials and Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Nicolas Newell
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Sun H, Wang H, Zhang W, Mao H, Li B. Single-cell RNA sequencing reveals resident progenitor and vascularization-associated cell subpopulations in rat annulus fibrosus. J Orthop Translat 2022; 38:256-267. [PMID: 36568849 PMCID: PMC9758498 DOI: 10.1016/j.jot.2022.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background One of the main causes of low back pain is intervertebral disc degeneration (IDD). Annulus fibrosus (AF) is important for the integrity and functions of the intervertebral disc (IVD). However, the resident functional cell components such as progenitors and vascularization-associated cells in AF are yet to be fully identified. Purpose Identification of functional AF cell subpopulations including resident progenitors and vascularization-associated cells. Methods In this study, the single-cell RNA sequencing data of rat IVDs from a public database were analyzed using Seurat for cell clustering, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional analysis, StemID for stem cell identification, Monocle and RNA velocity for pseudotime differentiation trajectory validation, single-cell regulatory network inference and clustering (SCENIC) for gene regulatory network (GRN) analysis, and CellChat for cell-cell interaction analysis. Immunostaining on normal and degenerated rat IVDs, as well as human AF, was used for validations. Results From the data analysis, seven AF cell clusters were identified, including two newly discovered functional clusters, the Grem1 + subpopulation and the Lum + subpopulation. The Grem1 + subpopulation had progenitor characteristics, while the Lum + subpopulation was associated with vascularization during IDD. The GRN analysis showed that Sox9 and Id1 were among the key regulators in the Grem1 + subpopulation, and Nr2f2 and Creb5 could be responsible for the vascularization function in the Lum + subpopulation. Cell-cell interaction analysis revealed highly regulated cellular communications between these cells, and multiple signaling networks including PDGF and MIF signaling pathways were involved in the interactions. Conclusions Our results revealed two new functional AF cell subpopulations, with stemness and vascularization induction potential, respectively. The Translational potential of this article These findings complement our knowledge about IVDs, especially the AF, and in return provide potential cell source and regulation targets for IDD treatment and tissue repair. The existence of the cell subpopulations was also validated in human AF, which strengthen the clinical relevance of the findings.
Collapse
Affiliation(s)
- Heng Sun
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haijiao Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China,Corresponding author.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China,Corresponding author. 178 Ganjiang Rd, Rm 201 Bldg 18, Soochow University (North Campus), Suzhou, Jiangsu, 215007, China.
| |
Collapse
|
11
|
In-vitro models of disc degeneration - A review of methods and clinical relevance. J Biomech 2022; 142:111260. [PMID: 36027637 DOI: 10.1016/j.jbiomech.2022.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
The intervertebral disc (IVD) provides flexibility, acts as a shock absorber, and transmits load. Degeneration of the IVD includes alterations in the biomechanics, extracellular matrix (ECM), and cellular activity. These changes are not always perceived, however, IVD degeneration can lead to severe health problems including long-term disability. To understand the pathogenesis of IVD degeneration and suitable testing methods for emerging treatments and therapies, this review documents in-vitro models of IVD degeneration including physical disruption, hyperphysiological loading, ECM degradation by enzyme digestion, or a combination of these methods. This paper reviews and critically analyses the models of degeneration published since the year 2000 in either in human or animal specimens. The results are categorised in terms of the IVD biomechanics, physical attributes, ECM composition, tissue damage and cellularity to evaluate the models with respect to natural human degeneration, and to provide recommendations for clinically relevant models for the various stages of degeneration. There is no one model that replicates the wide range of degenerative changes that occur as part of normal degeneration. However, cyclic overloading replicates many aspects of degeneration, with the advantage of a dose-response allowing the tuning of damage initiated. Models of severe degeneration are currently lacking, but there is potential that combining cyclic overloading and enzymatic digestion will provide model that closely resembles human IVD degeneration. This will provide an effective way to investigate the effects of severe degeneration, and the evaluation of treatments for the IVD, which would generally be indicated at this advanced stage of degeneration.
Collapse
|