1
|
Maas EJ, Donkers KM, de Hoop H, Nievergeld AHM, Thirugnanasambandam M, van Sambeek MRHM, Lopata RGP. In vivo Multi-perspective 3D + t Ultrasound Imaging and Motion Estimation of Abdominal Aortic Aneurysms. ULTRASONIC IMAGING 2025; 47:3-13. [PMID: 39377418 DOI: 10.1177/01617346241285168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Time-resolved three-dimensional ultrasound (3D + t US) is a promising imaging modality for monitoring abdominal aortic aneurysms (AAAs), providing their 3D geometry and motion. The lateral contrast of US is poor, a well-documented drawback which multi-perspective (MP) imaging could resolve. This study aims to show the feasibility of in vivo multi-perspective 3D + t ultrasound imaging of AAAs for improving the image contrast and displacement accuracy. To achieve this, single-perspective (SP) aortic ultrasound images from three different angles were spatiotemporally registered and fused, and the displacements were compounded. The fused MP had a significantly higher wall-lumen contrast than the SP images, for both patients and volunteers (P < .001). MP radial displacements patterns are smoother than SP patterns in 67% of volunteers and 92% of patients. The MP images from three angles have a decreased tracking error (P < .001 for all participants), and an improved SNRe compared to two out of three SP images (P < .05). This study has shown the added value of MP 3D + t US, improving both image contrast and displacement accuracy in AAA imaging. This is a step toward using multiple or large transducers in the clinic to capture the 3D geometry and strain more accurately, for patient-specific characterization of AAAs.
Collapse
Affiliation(s)
- Esther J Maas
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Kim M Donkers
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hein de Hoop
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Arjet H M Nievergeld
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mirunalini Thirugnanasambandam
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Marc R H M van Sambeek
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Richard G P Lopata
- PULS/e group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Xie H, Yu H, Wu H, Wang J, Wu S, Zhang J, Zhao H, Yuan M, Benitez Mendieta J, Anbananthan H, Winter C, Zhu C, Li Z. Quantifying irregular pulsation of intracranial aneurysms using 4D-CTA. J Biomech 2024; 174:112269. [PMID: 39128410 DOI: 10.1016/j.jbiomech.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Recent studies have suggested that irregular pulsation of intracranial aneurysm during the cardiac cycle may be potentially associated with aneurysm rupture risk. However, there is a lack of quantification method for irregular pulsations. This study aims to quantify irregular pulsations by the displacement and strain distribution of the intracranial aneurysm surface during the cardiac cycle using four-dimensional CT angiographic image data. Four-dimensional CT angiography was performed in 8 patients. The image data of a cardiac cycle was divided into approximately 20 phases, and irregular pulsations were detected in four intracranial aneurysms by visual observation, and then the displacement and strain of the intracranial aneurysm was quantified using coherent point drift and finite element method. The displacement and strain were compared between aneurysms with irregular and normal pulsations in two different ways (total and stepwise). The stepwise first principal strain was significantly higher in aneurysms with irregular than normal pulsations (0.20±0.01 vs 0.16±0.02, p=0.033). It was found that the irregular pulsations in intracranial aneurysms usually occur during the consecutive ascending or descending phase of volume changes during the cardiac cycle. In addition, no statistically significant difference was found in the aneurysm volume changes over the cardiac cycle between the two groups. Our method can successfully quantify the displacement and strain changes in the intracranial aneurysm during the cardiac cycle, which may be proven to be a useful tool to quantify intracranial aneurysm deformability and aid in aneurysm rupture risk assessment.
Collapse
Affiliation(s)
- Hujin Xie
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Han Yu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Hao Wu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Jiaqiu Wang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia; School of Engineering, London South Bank University, London, United Kingdom.
| | - Shanglin Wu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Jianjian Zhang
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China.
| | - Huilin Zhao
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China.
| | - Mingyang Yuan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Jessica Benitez Mendieta
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Haveena Anbananthan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Craig Winter
- The Kenneth G Jamieson Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia.
| | - Chengcheng Zhu
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.
| | - Zhiyong Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Sports Science, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
3
|
Jędrzejczak K, Antonowicz A, Butruk-Raszeja B, Orciuch W, Wojtas K, Piasecki P, Narloch J, Wierzbicki M, Makowski Ł. Three-Dimensionally Printed Elastic Cardiovascular Phantoms for Carotid Angioplasty Training and Personalized Healthcare. J Clin Med 2024; 13:5115. [PMID: 39274329 PMCID: PMC11396471 DOI: 10.3390/jcm13175115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objective: Atherosclerosis is becoming increasingly common in modern society. Owing to the increasing number of complex angioplasty procedures, there is an increasing need for training in cases where the risk of periprocedural complications is high. Methods: A procedure was developed to obtain three-dimensional (3D) models and printing of blood vessels. The mechanical and optical properties of the printed materials were also examined. Angioplasty and stent implantation were tested, and the phantom was compared with the clinical data of patients who underwent interventional treatment. Both laser techniques and cone-beam computed tomography of the phantoms were used for comparison. Results: The printed material exhibited mechanical parameters similar to those of blood vessel walls. The refractive index of 1.473 ± 0.002 and high transparency allowed for non-invasive laser examination of the interior of the print. The printed models behaved similarly to human arteries in vivo, allowing training in treatment procedures and considering vessel deformation during the procedure. Models with stents can be analyzed using laser and cone-beam computed tomography to compare stents from different manufacturers. Conclusions: The developed methodology allows for simple and time-efficient production of personalized vessel phantoms.
Collapse
Affiliation(s)
- Krystian Jędrzejczak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Arkadiusz Antonowicz
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
- Eurotek International Sp.z o.o., Skrzetuskiego 6, 02-726 Warsaw, Poland
| | - Beata Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Wojciech Orciuch
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Krzysztof Wojtas
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Piotr Piasecki
- Interventional Radiology Department, Military Institute of Medicine-National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Jerzy Narloch
- Interventional Radiology Department, Military Institute of Medicine-National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Marek Wierzbicki
- Interventional Radiology Department, Military Institute of Medicine-National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Łukasz Makowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
4
|
Derwich W, Schönborn M, Blase C, Wittek A, Oikonomou K, Böckler D, Erhart P. Correlation of four-dimensional ultrasound strain analysis with computed tomography angiography wall stress simulations in abdominal aortic aneurysms. JVS Vasc Sci 2024; 5:100199. [PMID: 38633883 PMCID: PMC11022090 DOI: 10.1016/j.jvssci.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024] Open
Abstract
Objective Biomechanical modeling of infrarenal aortic aneurysms seeks to predict ruptures in advance, thereby reducing aneurysm-related deaths. As individual methods focusing on strain and stress analysis lack adequate discretization power, this study aims to explore multifactorial characterization for progressive aneurysmal degeneration. The study's objective is to compare stress- and strain-related parameters in infrarenal aortic aneurysms. Methods Twenty-two patients with abdominal aortic aneurysms (AAAs) (mean maximum diameter, 53.2 ± 7.2 mm) were included in the exploratory study, examined by computed tomography angiography (CTA) and three-dimensional real-time speckle tracking ultrasound (4D-US). The conformity of aneurysm anatomy in 4D-US and CTA was determined with the mean point-to-point distance (MPPD). CTA was employed for each AAA to characterize stress-related indices using the semi-automated A4-clinics RE software. Five segmentations from one 4D-US examination were fused into one averaged model for strain analysis using MATLAB and the Abaqus solver. Results The mean MPPD between the adjacent points of the 4D-US and CTA-derived geometry was 1.8 ± 0.4 mm. The interclass correlation coefficients for all raters and all measurements for the maximum AAA diameter in 2D, 4D ultrasound, and CTA indicate moderate to good reliability (interclass correlation coefficient1 0.69 with 95% confidence interval [CI], 0.49-0.84; P < .001). The peak wall stress (PWS) correlates fairly with the maximum AAA diameter in 2D-US (r = 0.54; P < .01) and 4D-US (r = 0.53; P < .05) and moderately strongly with the maximum exterior AAA diameter (r = 0.63; P < .01). The peak wall rupture risk index shows a strong correlation with the PWS (ρ > 0.9; P < .001) and is influenced by anatomical parameters with equal strength. Isolated observation of the intraluminal thrombus does not provide significant information in the determination of PWS. The maximum AAA diameter in 2D-US shows a fair negative correlation with the mean circumferential, longitudinal and in-plane shear strain (ρ = -0.46; r = -0.45; ρ = -0.47; P < .05 for all). The circumferential strain ratio as an indicator of wall motion heterogeneity increases with the aneurysm diameter (r = 0.47; P < .05). The direct comparison of wall strain and wall stress indices shows no quantitative correlation. Conclusions The strain and stress analyses provide independent biomechanical information of AAAs. At the current stage of development, the two methods are considered complementary and may optimize a more patient-specific rupture risk prediction in the future.
Collapse
Affiliation(s)
- Wojciech Derwich
- Vascular and Endovascular Surgery, Department of Cardiac and Vascular Surgery, University Hospital Frankfurt Goethe University, Frankfurt/Main, Germany
| | - Manuel Schönborn
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt/Main, Germany
| | - Christopher Blase
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt/Main, Germany
| | - Andreas Wittek
- Personalized Biomedical Engineering Lab, Frankfurt University of Applied Sciences, Frankfurt/Main, Germany
| | - Kyriakos Oikonomou
- Vascular and Endovascular Surgery, Department of Cardiac and Vascular Surgery, University Hospital Frankfurt Goethe University, Frankfurt/Main, Germany
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Erhart
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
5
|
Jędrzejczak K, Orciuch W, Wojtas K, Kozłowski M, Piasecki P, Narloch J, Wierzbicki M, Makowski Ł. Prediction of Hemodynamic-Related Hemolysis in Carotid Stenosis and Aiding in Treatment Planning and Risk Stratification Using Computational Fluid Dynamics. Biomedicines 2023; 12:37. [PMID: 38255144 PMCID: PMC10813079 DOI: 10.3390/biomedicines12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Atherosclerosis affects human health in many ways, leading to disability or premature death due to ischemic heart disease, stroke, or limb ischemia. Poststenotic blood flow disruption may also play an essential role in artery wall impairment linked with hemolysis related to shear stress. The maximum shear stress in the atherosclerotic plaque area is the main parameter determining hemolysis risk. In our work, a 3D internal carotid artery model was built from CT scans performed on patients qualified for percutaneous angioplasty due to its symptomatic stenosis. The obtained stenosis geometries were used to conduct a series of computer simulations to identify critical parameters corresponding to the increase in shear stress in the arteries. Stenosis shape parameters responsible for the increase in shear stress were determined. The effect of changes in the carotid artery size, length, and degree of narrowing on the change in maximum shear stress was demonstrated. Then, a correlation for the quick initial diagnosis of atherosclerotic stenoses regarding the risk of hemolysis was developed. The developed relationship for rapid hemolysis risk assessment uses information from typical non-invasive tests for treated patients. Practical guidelines have been developed regarding which stenosis shape parameters pose a risk of hemolysis, which may be adapted in medical practice.
Collapse
Affiliation(s)
- Krystian Jędrzejczak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Wojciech Orciuch
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Krzysztof Wojtas
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Michał Kozłowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Ziołowa 47, 40-635 Katowice, Poland
| | - Piotr Piasecki
- Interventional Radiology Department, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Jerzy Narloch
- Interventional Radiology Department, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Marek Wierzbicki
- Interventional Radiology Department, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Łukasz Makowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
6
|
Avril S, Holzapfel GA. Foreword to the special issue entitled "Progress and future directions in soft tissue mechanics" in the Journal Biomechanics and Modeling in Mechanobiology. Biomech Model Mechanobiol 2023; 22:1461-1464. [PMID: 37707686 DOI: 10.1007/s10237-023-01770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Stéphane Avril
- Mines Saint-Etienne, Université Jean Monnet Saint-Etienne, INSERM, SAINBIOSE U1059, 42023, Saint-Etienne, France.
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|