1
|
Abedi Kichi Z, Dini N, Rojhannezhad M, Shirvani Farsani Z. Noncoding RNAs in B cell non-Hodgkins lymphoma. Gene 2024; 917:148480. [PMID: 38636814 DOI: 10.1016/j.gene.2024.148480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
B-cell non-Hodgkins lymphomas (BCNHLs) are a category of B-cell cancers that show heterogeneity. These blood disorders are derived from different levels of B-cell maturity. Among NHL cases, ∼80-90 % are derived from B-cells. Recent studies have demonstrated that noncoding RNAs (ncRNAs) contribute to almost all parts of mechanisms and are essential in tumorigenesis, including B-cell non-Hodgkins lymphomas. The study of ncRNA dysregulations in B-cell lymphoma unravels important mysteries in lymphoma's molecular etiology. It seems also necessary for discovering novel trials as well as investigating the potential of ncRNAs as markers for their diagnosis and prognosis. In the current study, we summarize the role of ncRNAs involving miRNAs, long noncoding RNAs, as well as circular RNAs in the development or progression of BCNHLs.
Collapse
Affiliation(s)
- Zahra Abedi Kichi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Germany
| | - Niloofar Dini
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahbubeh Rojhannezhad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Zhou Q, Zhang Y, Zhao M, Zhao X, Xue H, Xiao S. Knockdown of the long non‑coding RNA CACNA1G‑AS1 enhances cytotoxicity and apoptosis of human diffuse large B cell lymphoma by regulating miR‑3160‑5p. Exp Ther Med 2022; 24:627. [PMID: 36160896 PMCID: PMC9490116 DOI: 10.3892/etm.2022.11564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract: Long non-coding RNAs (lncRNAs) have been confirmed to be connected with tumor proliferation, apoptosis, metastasis and recurrence. Previous studies have indicated that lncRNA calcium voltage-gated channel subunit α1 G (CACNA1G)-antisense 1 (AS1) can function as a pro-oncogene in several types of cancer. However, the specific role and mechanism of CACNA1G-AS1 have not been fully elucidated in human diffuse large B cell lymphoma (DLBCL). In the present study, CACNA1G-AS1 expression was verified in DLBCL tissues and cells by reverse transcription-quantitative PCR, and the relationship between CACNA1G-AS1 and microRNA (miR)-3160-5p was confirmed using luciferase reporter assays. After CACNA1G-AS1-knockdown and miR-3160-5p-overexpression, MTT, colony formation and flow cytometry assays were conducted to assess the changes in the cytotoxicity and apoptosis of OCI-Ly10 and SUDHL-4 cells. In addition, in vivo experiments were performed to determine the impact of CACNA1G-AS1-knockdown on tumor growth and apoptosis. It was revealed that CACNA1G-AS1 was highly expressed in DLBCL tissues and cells and that expression of CACNA1G-AS1 was associated with the clinical stage of DLBCL. Functionally, CACNA1G-AS1-knockdown was demonstrated to increase cytotoxicity and expedite apoptosis in DLBCL cells in vitro and in vivo. In addition, CACNA1G-AS1 could downregulate miR-3160-5p by targeting binding in DLBCL cells. Overexpression of miR-3160-5p had the same effects on the cytotoxicity and apoptosis of DLBCL cells as CACNA1G-AS1-knockdown. Overall, the present study revealed that CACNA1G-AS1-knockdown and miR-3160-5p-overexpression could prevent DLBCL carcinogenesis, which might provide novel therapeutic targets for DLBCL.
Collapse
Affiliation(s)
- Qiqi Zhou
- Department of Oncology, The Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yan Zhang
- Department of Internal Medicine, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Meiqing Zhao
- Department of Hematology, Qingdao Eighth People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Xia Zhao
- Department of Lymphoma and Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266500, P.R. China
| | - Hongwei Xue
- Department of Lymphoma and Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266500, P.R. China
| | - Shuxin Xiao
- Department of Lymphoma and Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266500, P.R. China
| |
Collapse
|
3
|
Gholami A, Farhadi K, Sayyadipour F, Soleimani M, Saba F. Long noncoding RNAs (lncRNAs) in human lymphomas. Genes Dis 2022; 9:900-914. [PMID: 35685474 PMCID: PMC9170579 DOI: 10.1016/j.gendis.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 01/17/2023] Open
Abstract
Lymphomas are a diverse group of haematologic malignancies, which occur in infection-fighting cells of the lymphatic system. Long non-coding RNAs (lncRNAs) are non-coding RNAs, which have recently received significant attention as the main mediators of gene expression. In this review, we summarize the current knowledge on lncRNAs involved in lymphomas, their molecular functions, as well as their potential clinical value. Relevant literature was identified by a PubMed search of English language papers using the following terms: Lymphoma, LncRNA, leukemia, proliferation, apoptosis, and prognosis. LncRNAs are imperative for lymphoma carcinogenesis through affecting apoptosis, cell proliferation, invasion, and response to chemotherapy. The expression level of lncRNAs can affect chemotherapy-induced apoptosis. Taken together, lncRNA dysregulation in lymphoma cells is not only an epiphenomenon but also lncRNA transcription is critically related to the initiation and progression of lymphomas. Aberrant expression of lncRNAs can lead to the transformation of normal lymphocytes into lymphoma cells.
Collapse
Affiliation(s)
- Ali Gholami
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 671568-5420, Iran
| | - Khosro Farhadi
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 671568-5420, Iran
| | - Fatemeh Sayyadipour
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 671568-5420, Iran
| | - Masoud Soleimani
- Department of Haematology, Tarbiat Modares University, Tehran 146899-5513, Iran
| | - Fakhredin Saba
- Department of Medical Laboratory Science, School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah 671568-5420, Iran
| |
Collapse
|
4
|
Noncoding RNAs as novel immunotherapeutic tools against cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:135-161. [PMID: 35305717 DOI: 10.1016/bs.apcsb.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunotherapy is implemented as an important treatment strategy in various malignancies. In cancer, immunotherapy is employed for successful killing of tumor cells with high specificity and greater efficacy, with minimum side effects. Despite various available strategies, cellular immunotherapy including innate (NK cells, macrophages, dendritic cells) and adaptive (B cells and T cells) immune cells plays a critical role in tumor microenvironment. Since past few years, many drugs targeting immune checkpoint proteins including CTLA-4 and PD-1/PD-L1 have been investigated as immunotherapy approach against cancer but complete effectiveness still remains a question, as diverse mechanisms involved in tumorigenesis may result in the development of cancer cell resistance. Number of evidences have highlighted the significant role of non-coding RNAs (ncRNAs) in regulating multiple stages of cancer initiation, progression & immunity. ncRNAs comprises 98% human transcriptome and are basically considered as dark genome. Among ncRNAs, miRNAs and lncRNAs have been extensively studied in regulating diverse processes of cancer tumorigenesis. Upregulation of oncogenic and downregulation of tumor suppressive miRNAs/lncRNAs has been reported to facilitate the cancer progression and invasiveness. This chapter summarizes how an interplay between ncRNAs and immune cells in cancer pathogenesis can be therapeutically targeted to improve current treatment regimen. Strategies should be employed to improve the efficacy and reduce off-target effects of ncRNA based immunotherapy. Henceforth, combination of ncRNAs and available immunotherapy can be argued to enhance the efficacy of existing immunotherapeutic approaches against cancer to improve patient's survival.
Collapse
|
5
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Jamali E. The emerging role non-coding RNAs in B cell-related disorders. Cancer Cell Int 2022; 22:91. [PMID: 35193592 PMCID: PMC8862212 DOI: 10.1186/s12935-022-02521-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs and microRNAs have recently attained much attention regarding their role in the development of B cell lineage as well as participation in the lymphomagenesis. These transcripts have a highly cell type specific signature which endows them the potential to be used as biomarkers for clinical situations. Aberrant expression of several non-coding RNAs has been linked with B cell malignancies and immune related disorders such as rheumatoid arthritis, systemic lupus erythematous, asthma and graft-versus-host disease. Moreover, these transcripts can alter response of immune system to infectious conditions. miR-7, miR-16-1, miR-15a, miR-150, miR-146a, miR-155, miR-212 and miR-132 are among microRNAs whose role in the development of B cell-associated disorders has been investigated. Similarly, SNHG14, MALAT1, CRNDE, AL133346.1, NEAT1, SMAD5-AS1, OR3A4 and some other long non-coding RNAs participate in this process. In the current review, we describe the role of non-coding RNAs in B cell malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. Competitive Endogenous RNA Network Involving miRNA and lncRNA in Non-Hodgkin Lymphoma: Current Advances and Clinical Perspectives. Biomedicines 2021; 9:1934. [PMID: 34944752 PMCID: PMC8698845 DOI: 10.3390/biomedicines9121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a heterogeneous malignancy with variable patient outcomes. There is still a lack of understanding about the different players involved in lymphomagenesis, and the identification of new diagnostic and prognostic biomarkers is urgent. MicroRNAs and long non-coding RNAs emerged as master regulators of B-cell development, and their deregulation has been associated with the initiation and progression of lymphomagenesis. They can function by acting alone or, as recently proposed, by creating competing endogenous RNA (ceRNA) networks. Most studies have focused on individual miRNAs/lncRNAs function in lymphoma, and there is still limited data regarding their interactions in lymphoma progression. The study of miRNAs' and lncRNAs' deregulation in NHL, either alone or as ceRNAs networks, offers new insights into the molecular mechanisms underlying lymphoma pathogenesis and opens a window of opportunity to identify potential diagnostic and prognostic biomarkers. In this review, we summarized the current knowledge regarding the role of miRNAs and lncRNAs in B-cell lymphoma, including their interactions and regulatory networks. Finally, we summarized the studies investigating the potential of miRNAs and lncRNAs as clinical biomarkers, with a special focus on the circulating profiles, to be applied as a non-invasive, easy-to-obtain, and reproducible liquid biopsy for dynamic management of NHL patients.
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-243 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
| |
Collapse
|
7
|
Wang H, He F, Liang B, Jing Y, Zhang P, Liu W, Zhu B, Dou D. LincRNA-p21 alleviates atherosclerosis progression through regulating the miR-221/SIRT1/Pcsk9 axis. J Cell Mol Med 2021; 25:9141-9153. [PMID: 34541816 PMCID: PMC8500963 DOI: 10.1111/jcmm.16771] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is the main aetiology of coronary heart disease, cerebral infarction and peripheral vascular disease in humans. Long‐noncoding RNA (LincRNA)‐p21 has been reported to participate in the development of AS. Therefore, this study was designed to investigate the mechanism of LincRNA‐p21 on suppressing the development of AS. We fed ApoE−/− mice with a high‐fat diet to induce an AS mouse model where the lesion area of AS and the extent of lipid deposition were measured. The binding of LincRNA‐p21 and miR‐221 or miR‐221 and SIRT1 was measured using a dual luciferase reporter gene assay and RIP. Following loss‐ and gain‐ function assays, CCK8, EdU, Transwell assay and scratch test were performed to determine the biological processes of human aortic endothelial cells (HAECs). miR‐221 was highly expressed while SIRT1 was poorly expressed in AS. LincRNA‐p21 acted as a sponge for miR‐221. miR‐221 targeted and negatively regulated the expression of SIRT1. LincRNA‐p21 promoted the deacetylation of Pcsk9 by SIRT1 by competitively binding to miR‐221, whereby promoting HAEC proliferation, migration and tube formation. In conclusion, LincRNA‐p21 acted as a molecular sponge for miR‐221 to promote deacetylation of the promoter region of Pcsk9 by SIRT1, therefore preventing the development of AS.
Collapse
Affiliation(s)
- Haojie Wang
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Fei He
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bing Liang
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yuanhu Jing
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Pei Zhang
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Weichao Liu
- Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bowen Zhu
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Dongmei Dou
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Drillis G, Goulielmaki M, Spandidos DA, Aggelaki S, Zoumpourlis V. Non-coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies. Oncol Lett 2021; 21:393. [PMID: 33777216 PMCID: PMC7988683 DOI: 10.3892/ol.2021.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Contemporary developments in molecular biology have been combined with discoveries on the analysis of the role of all non-coding RNAs (ncRNAs) in human diseases, particularly in cancer, by examining their roles in cells. Currently, included among these common types of cancer, are all the lymphomas and lymphoid malignancies, which represent a diverse group of neoplasms and malignant disorders. Initial data suggest that non-coding RNAs, particularly long ncRNAs (lncRNAs), play key roles in oncogenesis and that lncRNA-mediated biology is an important key pathway to cancer progression. Other non-coding RNAs, termed microRNAs (miRNAs or miRs), are very promising cancer molecular biomarkers. They can be detected in tissues, cell lines, biopsy material and all biological fluids, such as blood. With the number of well-characterized cancer-related lncRNAs and miRNAs increasing, the study of the roles of non-coding RNAs in cancer is bringing forth new hypotheses of the biology of cancerous cells. For the first time, to the best of our knowledge, the present review provides an up-to-date summary of the recent literature referring to all diagnosed ncRNAs that mediate the pathogenesis of all types of lymphomas and lymphoid malignancies.
Collapse
Affiliation(s)
- Georgios Drillis
- 1st Internal Medicine Clinic, Medical School, Laiko University Hospital of Athens, 115 27 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Sofia Aggelaki
- Oncology Unit, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| |
Collapse
|
9
|
Bresesti C, Vezzoli V, Cangiano B, Bonomi M. Long Non-Coding RNAs: Role in Testicular Cancers. Front Oncol 2021; 11:605606. [PMID: 33767982 PMCID: PMC7986848 DOI: 10.3389/fonc.2021.605606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
In the last few years lncRNAs have gained increasing attention among the scientific community, thanks to the discovery of their implication in many physio-pathological processes. In particular, their contribution to tumor initiation, progression, and response to treatment has attracted the interest of experts in the oncologic field for their potential clinical application. Testicular cancer is one of the tumors in which lncRNAs role is emerging. Said malignancies already have very effective treatments, which although lead to the development of quite serious treatment-related conditions, such as secondary tumors, infertility, and cardiovascular diseases. It is therefore important to study the impact of lncRNAs in the tumorigenesis of testicular cancer in order to learn how to exploit them in a clinical setting and to substitute more toxic treatments. Eventually, the use of lncRNAs as biomarkers, drug targets, or therapeutics for testicular cancer may represent a valid alternative to that of conventional tools, leading to a better management of this malignancy and its related conditions, and possibly even to the treatment of poor prognosis cases.
Collapse
Affiliation(s)
- Chiara Bresesti
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Lab of Endocrine and Metabolic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Valeria Vezzoli
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Lab of Endocrine and Metabolic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Biagio Cangiano
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Lab of Endocrine and Metabolic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Lab of Endocrine and Metabolic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Decruyenaere P, Offner F, Vandesompele J. Circulating RNA biomarkers in diffuse large B-cell lymphoma: a systematic review. Exp Hematol Oncol 2021; 10:13. [PMID: 33593440 PMCID: PMC7885416 DOI: 10.1186/s40164-021-00208-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/06/2021] [Indexed: 12/31/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common histological subtype of non-Hodgkin's lymphomas (NHL). DLBCL is an aggressive malignancy that displays a great heterogeneity in terms of morphology, genetics and biological behavior. While a sustained complete remission is obtained in the majority of patients with standard immunochemotherapy, patients with refractory of relapsed disease after first-line treatment have a poor prognosis. This patient group represents an important unmet need in lymphoma treatment. In recent years, improved understanding of the underlying molecular pathogenesis had led to new classification and prognostication tools, including the development of cell-free biomarkers in liquid biopsies. Although the majority of studies have focused on the use of cell-free fragments of DNA (cfDNA), there has been an increased interest in circulating-free coding and non-coding RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA), as well as RNA encapsulated in extracellular vesicles or tumor-educated platelets (TEPs). We performed a systematic search in PubMed to identify articles that evaluated circulating RNA as diagnostic, subtype, treatment response or prognostic biomarkers in a human DLBCL population. A total of 35 articles met the inclusion criteria. The aim of this systematic review is to present the current understanding of circulating RNA molecules as biomarker in DLBCL and to discuss their future potential.
Collapse
Affiliation(s)
- Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, 9K12, Campus UZ Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, 9K12, Campus UZ Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Circulating long non-coding RNAs HOTAIR, Linc-p21, GAS5 and XIST expression profiles in diffuse large B-cell lymphoma: association with R-CHOP responsiveness. Sci Rep 2021; 11:2095. [PMID: 33483590 PMCID: PMC7822898 DOI: 10.1038/s41598-021-81715-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
The reliable identification of diffuse large B-cell lymphoma (DLBCL)-specific targets owns huge implications for its diagnosis and treatment. Long non-coding RNAs (lncRNAs) are implicated in DLBCL pathogenesis; however, circulating DLBCL-related lncRNAs are barely investigated. We investigated plasma lncRNAs; HOTAIR, Linc-p21, GAS5 and XIST as biomarkers for DLBCL diagnosis and responsiveness to R-CHOP therapy. Eighty-four DLBCL patients and thirty-three healthy controls were included. Only plasma HOTAIR, XIST and GAS5 were differentially expressed in DLBCL patients compared to controls. Pretreatment plasma HOTAIR was higher, whereas GAS5 was lower in non-responders than responders to R-CHOP. Plasma GAS5 demonstrated superior diagnostic accuracy (AUC = 0.97) whereas a panel of HOTAIR + GAS5 superiorly discriminated responders from non-responders by ROC analysis. In multivariate analysis, HOTAIR was an independent predictor of non-response. Among patients, plasma HOTAIR, Linc-p21 and XIST were correlated. Plasma GAS5 negatively correlated with International Prognostic Index, whereas HOTAIR positively correlated with performance status, denoting their prognostic potential. We constructed the lncRNAs-related protein-protein interaction networks linked to drug response via bioinformatics analysis. In conclusion, we introduce plasma HOTAIR, GAS5 and XIST as potential non-invasive diagnostic tools for DLBCL, and pretreatment HOTAIR and GAS5 as candidates for evaluating therapy response, with HOTAIR as a predictor of R-CHOP failure. We provide novel surrogates for future predictive studies in personalized medicine.
Collapse
|
12
|
Taniue K, Akimitsu N. The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis. Int J Mol Sci 2021; 22:E632. [PMID: 33435206 PMCID: PMC7826647 DOI: 10.3390/ijms22020632] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, research on cancer biology has focused on the involvement of protein-coding genes in cancer development. Long noncoding RNAs (lncRNAs), which are transcripts longer than 200 nucleotides that lack protein-coding potential, are an important class of RNA molecules that are involved in a variety of biological functions. Although the functions of a majority of lncRNAs have yet to be clarified, some lncRNAs have been shown to be associated with human diseases such as cancer. LncRNAs have been shown to contribute to many important cancer phenotypes through their interactions with other cellular macromolecules including DNA, protein and RNA. Here we describe the literature regarding the biogenesis and features of lncRNAs. We also present an overview of the current knowledge regarding the roles of lncRNAs in cancer from the view of various aspects of cellular homeostasis, including proliferation, survival, migration and genomic stability. Furthermore, we discuss the methodologies used to identify the function of lncRNAs in cancer development and tumorigenesis. Better understanding of the molecular mechanisms involving lncRNA functions in cancer is critical for the development of diagnostic and therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Cancer Genomics and Precision Medicine, Division of Gastroenterology and Hematology-Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
13
|
Shi Y, Ding D, Qu R, Tang Y, Hao S. Non-Coding RNAs in Diffuse Large B-Cell Lymphoma. Onco Targets Ther 2020; 13:12097-12112. [PMID: 33262609 PMCID: PMC7699984 DOI: 10.2147/ott.s281810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma worldwide. The molecular mechanisms underlying DLBCL have not been fully elucidated, and approximately 40% of patients who undergo standard chemoimmunotherapy still present with primary refractory disease or relapse. Non-coding RNAs (ncRNAs), a group of biomolecules functioning at the RNA level, are increasingly recognized as vital components of molecular biology. With the development of RNA-sequencing (RNA-Seq) technology, accumulating evidence shows that ncRNAs are important mediators of diverse biological processes such as cell proliferation, differentiation, and apoptosis. They are also considered promising biomarkers and better candidates than proteins and genes for the early recognition of disease onset, as they are associated with relative stability, specificity, and reproducibility. In this review, we provide the first comprehensive description of the current knowledge regarding three groups of ncRNAs-microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs)-focusing on their characteristics, molecular functions, as well as diagnostic and therapeutic potential in DLBCL. This review provides an exhaustive account for researchers to explore novel biomarkers for the diagnosis and prognosis of DLBCL and therapeutic targets.
Collapse
Affiliation(s)
- Yan Shi
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Daihong Ding
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
14
|
Li J, Zou J, Wan X, Sun C, Peng F, Chu Z, Hu Y. The Role of Noncoding RNAs in B-Cell Lymphoma. Front Oncol 2020; 10:577890. [PMID: 33194698 PMCID: PMC7645065 DOI: 10.3389/fonc.2020.577890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, emerging evidence has suggested that noncoding RNAs (ncRNAs) participate in nearly every aspect of biological processes and play a crucial role in the genesis and progression of numerous tumors, including B-cell lymphoma. The exploration of ncRNA dysregulations and their functions in B-cell lymphoma provides new insights into lymphoma pathogenesis and is essential for indicating future clinical trials and optimizing the diagnostic and therapeutic strategies. In this review, we summarize the role of ncRNAs in B-cell lymphoma and discuss their potential in clinical applications.
Collapse
Affiliation(s)
- Jingwen Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyue Wan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangbo Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Li Y, Castellano JJ, Moreno I, Martínez-Rodenas F, Hernandez R, Canals J, Diaz T, Han B, Muñoz C, Biete A, Monzo M, Navarro A. LincRNA-p21 Levels Relates to Survival and Post-Operative Radiotherapy Benefit in Rectal Cancer Patients. Life (Basel) 2020; 10:life10090172. [PMID: 32878005 PMCID: PMC7555220 DOI: 10.3390/life10090172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
LincRNA-p21 is a long non-coding RNA involved in the p53 pathway and angiogenesis regulation that acts as prognostic marker in several tumors. In the present study, we aimed to analyze the clinical value of lincRNA-p21 in 177 resected stage I–III colorectal cancer (CRC) patients. Tumor and normal paired tissue and plasma samples from tumor-draining mesenteric veins and paired peripheral veins were analyzed. LincRNA-p21 expression was determined by RTqPCR and correlated with disease-free (DFS) and overall survival (OS). LincRNA-p21 was downregulated in tumor versus normal tissue (p = 0.0012). CRC patients with high lincRNA-p21 expression had shorter DFS (p = 0.0372) and shorter OS (p = 0.0465). Of note, the major prognostic impact was observed in the subset of rectal cancer patients where patients with high lincRNA-p21 levels had worse DFS (p = 0.0226) and OS (p = 0.0457). Interestingly, rectal cancer patients with high lincRNA-p21 benefited from post-operative chemoradiotherapy, as indicated by a longer OS in the group of high lincRNA-p21 patients receiving post-operative chemoradiotherapy (p = 0.04). Finally, patients with high lincRNA-p21 levels in mesenteric vein (MV) had shorter OS (p = 0.0329). LincRNA-p21 is a marker of advanced disease and worse outcome in CRC. Moreover, rectal cancer patients with high lincRNA-p21 levels could benefit from post-operative chemoradiotherapy, and plasmatic-lincRNA-p21 is a promising liquid biopsy biomarker.
Collapse
Affiliation(s)
- Yan Li
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Joan J. Castellano
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Isabel Moreno
- Department of Medical Oncology and Surgery, Hospital Municipal de Badalona, 08911 Badalona, Spain;
| | - Francisco Martínez-Rodenas
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
- Department of Medical Oncology and Surgery, Hospital Municipal de Badalona, 08911 Badalona, Spain;
| | - Raquel Hernandez
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
- Department of Medical Oncology and Surgery, Hospital Municipal de Badalona, 08911 Badalona, Spain;
| | - Jordi Canals
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Tania Diaz
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Bing Han
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Carmen Muñoz
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Albert Biete
- Radiation Oncology Department, Hospital Clinic de Barcelona, University of Barcelona, 08036 Barcelona, Spain;
| | - Mariano Monzo
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain; (Y.L.); (J.J.C.); (F.M.-R.); (R.H.); (J.C.); (T.D.); (B.H.); (C.M.); (M.M.)
- Correspondence: ; Tel.: +34-934021903
| |
Collapse
|
16
|
Ogunwobi OO, Mahmood F, Akingboye A. Biomarkers in Colorectal Cancer: Current Research and Future Prospects. Int J Mol Sci 2020; 21:E5311. [PMID: 32726923 PMCID: PMC7432436 DOI: 10.3390/ijms21155311] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide, despite progress made in detection and management through surgery, chemotherapy, radiotherapy, and immunotherapy. Novel therapeutic agents have improved survival in both the adjuvant and advanced disease settings, albeit with an increased risk of toxicity and cost. However, metastatic disease continues to have a poor long-term prognosis and significant challenges remain due to late stage diagnosis and treatment failure. Biomarkers are a key tool in early detection, prognostication, survival, and predicting treatment response. The past three decades have seen advances in genomics and molecular pathology of cancer biomarkers, allowing for greater individualization of therapy with a positive impact on survival outcomes. Clinically useful predictive biomarkers aid clinical decision making, such as the presence of KRAS gene mutations predicting benefit from epidermal growth factor receptor (EGFR) inhibiting antibodies. However, few biomarkers have been translated into clinical practice highlighting the need for further investigation. We review a range of protein, DNA and RNA-based biomarkers under investigation for diagnostic, predictive, and prognostic properties for CRC. In particular, long non-coding RNAs (lncRNA), have been investigated as biomarkers in a range of cancers including colorectal cancer. Specifically, we evaluate the potential role of lncRNA plasmacytoma variant translocation 1 (PVT1), an oncogene, as a diagnostic, prognostic, and therapeutic biomarker in colorectal cancer.
Collapse
Affiliation(s)
- Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Fahad Mahmood
- The Dudley Group Hospitals, Russells Hall Hospital, The Dudley Group NHS Foundation Trust, Dudley, West Midlands DY1 2HQ, UK;
| | - Akinfemi Akingboye
- The Dudley Group Hospitals, Russells Hall Hospital, The Dudley Group NHS Foundation Trust, Dudley, West Midlands DY1 2HQ, UK;
| |
Collapse
|
17
|
Amirinejad R, Rezaei M, Shirvani-Farsani Z. An update on long intergenic noncoding RNA p21: a regulatory molecule with various significant functions in cancer. Cell Biosci 2020; 10:82. [PMID: 32582435 PMCID: PMC7310005 DOI: 10.1186/s13578-020-00445-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Long intergenic noncoding RNA p21 was mapped on the human chromosome 6p21.2. Accordingly, it was firstly described by promoting the p53-dependent apoptosis in the mouse. Also, it is a new lncRNA playing some vital roles in the cell cycle, apoptosis, cell proliferation, tumorigenesis, invasion, metastasis, and angiogenesis. In this regard, it was shown that, lincRNA-p21 regulates these biological processes involved in carcinogenesis through various signaling pathways including Notch signaling, JAK2/STAT3, and AKT/mTOR pathways. Another mechanism by that lincRNA-p21 can affect these processes is a cross-talk with different miRNAs. In vitro and in vivo studies revealed dysregulation of lincRNA-p21 in various human cancers. In addition, emerging evidence demonstrated that, lincRNA-p21 can be considered as a potential prognostic and therapeutic biomarker in cancers. Also, lincRNA-p21 enhances the response to radiotherapy for colorectal cancer. However, the molecular mechanisms of lincRNA-p21 in carcinogenesis have not been fully elucidated so far. So, this review summarizes the function of lincRNA-p21, as a tumor suppressor factor in different biological processes implicated in cancers.
Collapse
Affiliation(s)
- Roya Amirinejad
- Genetics Department, Breast Cancer Research Center, Motamed Center Institute, ACECR, Tehran, Iran
| | - Mina Rezaei
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| |
Collapse
|
18
|
Huang X, Qian W, Ye X. Long Noncoding RNAs in Diffuse Large B-Cell Lymphoma: Current Advances and Perspectives. Onco Targets Ther 2020; 13:4295-4303. [PMID: 32547063 PMCID: PMC7244244 DOI: 10.2147/ott.s253330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a complex and aggressive malignancy originating from B lymphocytes and characterized by extensive clinical, phenotypic and molecular heterogeneity. Although research conducted over the past decades has substantially improved our understanding of DLBCL, its pathogenesis has not yet been fully elucidated. The development of RNA sequencing technology has allowed the identification of numerous long noncoding RNAs (lncRNAs) that exhibit aberrant expression in DLBCL. These lncRNAs play crucial roles in DLBCL development and pathogenesis and are thus good candidates for use as diagnostic biomarkers or therapeutic targets. In this review, we describe the lncRNAs associated with DLBCL, summarize their characteristics and molecular functions, and discuss their relationships with clinical practice.
Collapse
Affiliation(s)
- Xianbo Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| |
Collapse
|
19
|
Zhang L, Xu X, Su X. Noncoding RNAs in cancer immunity: functions, regulatory mechanisms, and clinical application. Mol Cancer 2020; 19:48. [PMID: 32122338 PMCID: PMC7050126 DOI: 10.1186/s12943-020-01154-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
It is well acknowledged that immune system is deeply involved in cancer initiation and progression, and can exert both pro-tumorigenic and anti-tumorigenic effects, depending on specific microenvironment. With the better understanding of cancer-associated immune cells, especially T cells, immunotherapy was developed and applied in multiple cancers and exhibits remarkable efficacy. However, currently only a subset of patients have responses to immunotherapy, suggesting that a boarder view of cancer immunity is required. Non-coding RNAs (ncRNAs), mainly including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are identified as critical regulators in both cancer cells and immune cells, thus show great potential to serve as new therapeutic targets to improve the response of immunotherapy. In this review, we summarize the functions and regulatory mechanisms of ncRNAs in cancer immunity, and highlight the potential of ncRNAs as novel targets for immunotherapy.
Collapse
Affiliation(s)
- Le Zhang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, FL, 33612-9497, USA
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
20
|
Yang J, Wang X. Role of long non-coding RNAs in lymphoma: A systematic review and clinical perspectives. Crit Rev Oncol Hematol 2019; 141:13-22. [PMID: 31202125 DOI: 10.1016/j.critrevonc.2019.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/04/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), are over 200 nucleotides in length, and they rarely act as templates for protein synthesis. Mounting studies have shown that lncRNAs play a crucial regulatory role in various processes that sustain life, such as epigenetic regulation, cell cycle control, splicing, and post-transcriptional regulation. LncRNAs were aberrantly expressed in most hematological malignancies including lymphoma, participating in tumor suppression or promoting oncogenesis and modulating key genes in different pathways. The specific expression patterns of lncRNAs in lymphoma make them good candidates to be used as diagnostic biomarkers or as therapeutic targets. LncRNAs can be targeted by multiple approaches including nucleic acid therapeutics, CRISPR/Cas genome editing techniques, small molecule inhibitors, and gene therapy. Efforts are made to develop therapeutic strategies aimed at targeting lncRNAs, but there are still some avenues to be covered before they can be applied to the clinical treatment of lymphoma.
Collapse
Affiliation(s)
- Juan Yang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China; School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China; School of Medicine, Shandong University, Jinan, Shandong, 250012, China; Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China; Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
21
|
Serum lincRNA-p21 expression in primary liver diseases and liver metastatic diseases. Pathol Res Pract 2019; 215:779-783. [DOI: 10.1016/j.prp.2019.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/25/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023]
|
22
|
Jin S, Yang X, Li J, Yang W, Ma H, Zhang Z. p53-targeted lincRNA-p21 acts as a tumor suppressor by inhibiting JAK2/STAT3 signaling pathways in head and neck squamous cell carcinoma. Mol Cancer 2019; 18:38. [PMID: 30857539 PMCID: PMC6410525 DOI: 10.1186/s12943-019-0993-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background Long intergenic noncoding RNA p21 (lincRNA-p21) is considered a target of wild-type p53, but little is known about its regulation by mutant p53 and its functions during the progression of head and neck squamous cell carcinoma (HNSCC). Methods RNAscope was used to detect the expression and distribution of lincRNA-p21. Chromatin immunoprecipitation and electrophoretic mobility shift assays were performed to analyze the transcriptional regulation of lincRNA-p21 in HNSCC cells. The biological functions of lincRNA-p21 were investigated in vitro and in vivo. RNA immunoprecipitation and pull-down assays were used to detect the direct binding of lincRNA-p21. Results Lower lincRNA-p21 expression was observed in HNSCC tissues and indicated worse prognosis. Both wild and mutant type p53 transcriptionally regulated lincRNA-p21, but nuclear transcription factor Y subunit alpha (NF-YA) was essential for mutant p53 in the regulation of lincRNA-p21. Ectopic expression of lincRNA-p21 significantly inhibited cell proliferation capacity in vitro and in vivo and vice versa. Moreover, the overexpression of lincRNA-p21 induced G1 arrest and apoptosis. Knockdown NF-YA expression reversed tumor suppressor activation of lincRNA-p21 in mutant p53 cells, not wild-type p53 cells. A negative correlation was observed between lincRNA-p21 and the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) in HNSCC tissues. High lincRNA-p21 expression inhibited Janus kinase 2 (JAK2)/STAT3 signal activation and vice versa. Further, we observed direct binding to STAT3 by lincRNA-p21 in HNSCC cells, which suppressed STAT3-induced oncogenic potential. Conclusions Our results revealed the transcriptional regulation of lincRNA-p21 by the mutant p53/NF-YA complex in HNSCC. LincRNA-p21 acted as a tumor suppressor in HNSCC progression, which was attributed to direct binding to STAT3 and blocking of JAK2/STAT3 signaling. Electronic supplementary material The online version of this article (10.1186/s12943-019-0993-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shufang Jin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jiayi Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Wenyi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China. .,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China. .,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
23
|
Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T. Emerging roles of long non-coding RNA in cancer. Cancer Sci 2018; 109:2093-2100. [PMID: 29774630 PMCID: PMC6029823 DOI: 10.1111/cas.13642] [Citation(s) in RCA: 446] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Since comprehensive analysis of the mammalian genome revealed that the majority of genomic products are transcribed in long non‐coding RNA (lncRNA), increasing attention has been paid to these transcripts. The applied next‐generation sequencing technologies have provided accumulating evidence of dysregulated lncRNA in cancer. The implication of this finding can be seen in many forms and at multiple levels. With impacts ranging from integrating chromatin remodeling complexes to regulating transcription and post‐transcriptional processes, aberrant expression of lncRNA may have repercussions in cell proliferation, tumor progression or metastasis. lncRNA may act as enhancers, scaffolds or decoys by physically interacting with other RNA species or proteins, resulting in a direct impact on cell signaling cascades. Even though their functional classification is well‐established in the context of cancer, clearer characterization in terms of their phenotypic outputs is needed to optimize and identify suitable candidates that enable the development of new therapeutic strategies and the design of novel diagnostic approaches. The present article aims to outline different cancer‐associated lncRNA according to their contribution to tumor suppression or tumor promotion based on their most current functional annotations.
Collapse
Affiliation(s)
- Anna Sanchez Calle
- Division of Molecular and Cellular Medicine; National Cancer Center Research Institute; Tokyo Japan
| | - Yumi Kawamura
- Division of Molecular and Cellular Medicine; National Cancer Center Research Institute; Tokyo Japan
- Ph.D. Program in Human Biology; School of Integrative and Global Majors; University of Tsukuba; Tsukuba Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine; National Cancer Center Research Institute; Tokyo Japan
| | - Fumitaka Takeshita
- Department of Functional Analysis; FIOC; National Cancer Center Research Institute; Tokyo Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine; National Cancer Center Research Institute; Tokyo Japan
- Institute of Medical Science; Tokyo Medical University; Tokyo Japan
| |
Collapse
|
24
|
Tian L, He Y, Zhang H, Wu Z, Li D, Zheng C. Comprehensive analysis of differentially expressed profiles of lncRNAs and mRNAs reveals ceRNA networks in the transformation of diffuse large B-cell lymphoma. Oncol Lett 2018; 16:882-890. [PMID: 29963159 PMCID: PMC6019896 DOI: 10.3892/ol.2018.8722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 11/16/2017] [Indexed: 12/02/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is one of the malignancies with a high mortality rate. The molecular mechanisms involved in transformation of DLBCL remain unclear. Therefore, it is critically important to investigate the biological mechanisms of DLBCL. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) serve key functions in tumorigenesis, cancer progression and metastasis. Compared with follicular lymphoma (FL), a total of 123 upregulated lncRNAs and 192 downregulated lncRNAs in DLBCL were identified. Subsequently, a specific DLBCL-associated competing endogenous RNA (ceRNA) network and a specific FL-associated ceRNA network was constructed. Gene Oncology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that differentially expressed lncRNAs served key functions in regulating signal transduction, transcription, cell adhesion, development and protein amino acid phosphorylation. Furthermore, the molecular functions of PRKCQ antisense RNA 1, HLA complex P5, OIP5 antisense RNA 1, growth arrest specific 5 and taurine upregulated 1 were investigated, and it was revealed that these lncRNAs served important functions in regulating a series of biological processes, including anti-apoptosis, cell cycle, DNA repair, response to oxidative stress and transcription. The present study may provide a potential novel therapeutic and prognostic target for the treatment of DLBCL.
Collapse
Affiliation(s)
- Lu Tian
- Department of Vascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yangyan He
- Department of Vascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Hongkun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ziheng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Donglin Li
- Department of Vascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Chengfei Zheng
- Department of Vascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
25
|
Zhao S, Fang S, Liu Y, Li X, Liao S, Chen J, Liu J, Zhao L, Li H, Zhou W, Shen W, Dong X, Xiang R, Wang L, Zhao Y. The long non-coding RNA NONHSAG026900 predicts prognosis as a favorable biomarker in patients with diffuse large B-cell lymphoma. Oncotarget 2018; 8:34374-34386. [PMID: 28423735 PMCID: PMC5470975 DOI: 10.18632/oncotarget.16163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/24/2017] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs are known to be involved in cancer progression, but their biological functions and prognostic values are still largely unexplored in diffuse large B-cell lymphoma. In this study, long non-coding RNAs expression was characterized in 1,403 samples including normal and diffuse large B-cell lymphoma by repurposing 7 microarray datasets. Compared with any stage of normal B cells, NONHSAG026900 expression was significantly decreased in tumor samples. And in germinal center B-cell subtype, the significantly higher expression of NONHSAG026900 indicated it was a favorable prognosis biomarker. Then the prognostic power of NONHSAG026900 was validated with another independent dataset and NONHSAG026900 improved the predictive power of International Prognostic Index as an independent factor. Moreover, functional prediction and validation demonstrated that NONHSAG026900 could inhibit cell cycle activity to restrain tumor proliferation. These findings identified NONHSAG026900 as a novel prognostic biomarker and offered a new therapeutic target for diffuse large B-cell lymphoma patients.
Collapse
Affiliation(s)
- Shuangtao Zhao
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuangsang Fang
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Liu
- The School of Medicine, Nankai University, Tianjin, China.,The Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China.,The Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | - Xixi Li
- The School of Medicine, Nankai University, Tianjin, China.,Department of Pathology, Nankai University, Tianjin, China
| | - Shengyou Liao
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Jinwen Chen
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Jingjia Liu
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Lianhe Zhao
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhou
- The School of Medicine, Nankai University, Tianjin, China.,The Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China.,The Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | - Wenzhi Shen
- The School of Medicine, Nankai University, Tianjin, China.,The Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China.,The Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | - Xiaoli Dong
- The School of Medicine, Nankai University, Tianjin, China.,The Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China.,The Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | - Rong Xiang
- The School of Medicine, Nankai University, Tianjin, China.,The Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China.,The Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Zhao
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Li Z, Li X, Jiang C, Qian W, Tse G, Chan MT, Wu WK. Long non-coding RNAs in rheumatoid arthritis. Cell Prolif 2018; 51:e12404. [PMID: 29110355 PMCID: PMC6620844 DOI: 10.1111/cpr.12404] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis, a disabling autoimmune disease, is associated with altered gene expression in circulating immune cells and synovial tissues. Accumulating evidence has suggested that long non-coding RNAs (lncRNAs), which modulate gene expression through multiple mechanisms, are important molecules involved in immune and inflammatory pathways. Importantly, many studies have reported that lncRNAs can be utilized as biomarkers for disease diagnosis and prognostication. Recently, dysregulation of lncRNAs in rheumatoid arthritis and other autoimmune diseases has been revealed. Experimental studies also confirmed their crosstalk with matrix metalloproteinases, nuclear factor-κB signalling and T-cell response pertinent to autoimmunity and inflammation. Circulating lncRNAs, such as HOTAIR, differentiated patients with rheumatoid arthritis from healthy subjects. Taken together, lncRNAs are good candidates as biomarkers and therapeutic targets in rheumatoid arthritis. Further investigation on in vivo delivery of these regulatory molecules and large-cohort validation of their clinical applicability may be useful.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedics SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xingye Li
- Department of Orthopedics SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Orthopedic SurgeryBeijing Jishuitan HospitalFourth Clinical College of Peking UniversityJishuitan Orthopaedic College of Tsinghua UniversityBeijingChina
| | - Chao Jiang
- Department of Orthopedics SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of OrthopaedicsShaoxing People's HospitalShaoxing Hospital of Zhejiang UniversityShaoxingZhejiangChina
| | - Wenwei Qian
- Department of Orthopedics SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Gary Tse
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongHong Kong
| | - Matthew T.V. Chan
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong KongHong Kong
| | - William K.K. Wu
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong KongHong Kong
- State Key Laboratory of Digestive Disease and LKS Institute of Health SciencesThe Chinese University of Hong KongHong KongHong Kong
| |
Collapse
|
27
|
LncRNA EGOT Promotes Tumorigenesis Via Hedgehog Pathway in Gastric Cancer. Pathol Oncol Res 2017; 25:883-887. [PMID: 29209988 DOI: 10.1007/s12253-017-0367-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022]
Abstract
Gastric cancer (GC) is one of the mostly terminal malignancies with poor prognosis. Long noncoding RNA EGOT (EGOT) acts as a crucial regulator in the breast cancer. However, the function of EGOT in GC remains unknown. This work was to explore the clinical value and biological significance of EGOT in GC. EGOT levels in GC tissue and cell were analyzed by qRT-PCR. After knockdown of EGOT, GC cell growth and cycle progression were detected. The expression of EGOT was observably elevated in GC. Upregulation of EGOT was related with lymphatic metastasis and TNM stage. In addition, knockdown of EGOT by siRNA could significantly inhibit GC cell proliferation and arrest cycle progression in G1 phase. Moreover, EGOT mediated cyclin D1 expression in GC cells which was regulated by Hedgehog pathway. Further, loss of EGOT downregulated Hedgehog signaling pathway in GC cells. EGOT functions as an oncogene in GC, and may be useful as a conceivable diagnostic and prognostic biomarker for GC tumorigenesis.
Collapse
|
28
|
Zhu D, Fang C, Li X, Geng Y, Li R, Wu C, Jiang J, Wu C. Predictive analysis of long non-coding RNA expression profiles in diffuse large B-cell lymphoma. Oncotarget 2017; 8:23228-23236. [PMID: 28423571 PMCID: PMC5410299 DOI: 10.18632/oncotarget.15571] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/12/2017] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are implicated in many tumors. To find novel targets for study of diffuse large B-cell lymphoma (DLBCL), our team performed genome-wide analyses of lncRNA expression in 5 DLBCL cell lines using the 4*180K Agilent lncRNA Chip system, and in normal B cells. Five lncRNAs were validated by quantitative reverse transcription polymerase chain reaction. The differentially expressed lncRNAs and mRNAs were identified via false discovery rate and fold-change filtering. Potential targets correlated with DLBCL were recognized via gene ontology and pathway analysis. Establishment of the co-expression network was done using Cytoscape. In total, 1053 lncRNAs and 4391 mRNAs were dysregulated in DLBCL cells, being comparing with normal B cells. The results suggested that the expressions of the 5 lncRNAs were consistent with the chip results. Several terms including the cell cycle, apoptosis, B cell receptor and NF-κB signaling pathways were important in the progression of DLBCL. The chromosome locations of a few lncRNAs and the associated coexpressed genes were demonstrated by cis-regulatory gene analyses. The results of trans-analyses showed that multiple transcription factors regulated lncRNA and gene expression. Those outstanding lncRNAs in each group were implicated in the regulation of the TF-lncRNA-target gene network. Our study identified a set of lncRNAs differentially expressed in DLBCL cells.
Collapse
Affiliation(s)
- Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Cheng Fang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Xiaodong Li
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ruiqi Li
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chen Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Changping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
29
|
Siyu G, Linqing Z, Linling K, Hong L, Guoqi S, Cho WC. Long noncoding RNA identification in lymphoma. Future Oncol 2017; 13:2479-2487. [PMID: 29121780 DOI: 10.2217/fon-2017-0230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It has been found that long noncoding RNA (lncRNA) are abnormally expressed in lymphoma and play an important role in its pathogenesis. Through the detection and analysis of lncRNA, it was found that lncRNA could be used as an excellent biomarker for the diagnosis and prognosis of cancer. In lymphoma, abnormal lncRNA expression is associated with the patient's clinical characteristics, it can be used to determine the prognosis of the patient and serve as a therapeutic target in the disease.
Collapse
Affiliation(s)
- Gu Siyu
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Zou Linqing
- Department of Human Anatomy, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Kong Linling
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Liu Hong
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Song Guoqi
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, PR China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Block R, 30 Gascoigne Road, Hong Kong, PR China
| |
Collapse
|
30
|
Emerging roles for long noncoding RNAs in B-cell development and malignancy. Crit Rev Oncol Hematol 2017; 120:77-85. [PMID: 29198340 DOI: 10.1016/j.critrevonc.2017.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Long noncoding (lnc)RNAs have emerged as essential mediators of cellular biology, differentiation and malignant transformation. LncRNAs have a broad range of possible functions at the transcriptional, posttranscriptional and protein level and their aberrant expression significantly contributes to the hallmarks of cancer cell biology. In addition, their high tissue- and cell-type specificity makes lncRNAs especially interesting as biomarkers, prognostic factors or specific therapeutic targets. Here, we review current knowledge on lncRNA expression changes during normal B-cell development, indicating essential functions in the differentiation process. In addition we address lncRNA deregulation in B-cell malignancies, the putative prognostic value of this as well as the molecular functions of multiple deregulated lncRNAs. Altogether, the discussed work indicates major roles for lncRNAs in normal and malignant B cells affecting oncogenic pathways as well as the response to common therapeutics.
Collapse
|
31
|
Zhu H, Yu J, Zhu H, Guo Y, Feng S. Identification of key lncRNAs in colorectal cancer progression based on associated protein-protein interaction analysis. World J Surg Oncol 2017; 15:153. [PMID: 28797257 PMCID: PMC5553992 DOI: 10.1186/s12957-017-1211-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/22/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) was one of the most commonly diagnosed malignancies. The molecular mechanisms involved in the progression of CRC remain unclear. Accumulating evidences showed that long noncoding RNAs (lncRNAs) played key roles in tumorigenesis, cancer progression, and metastasis. Therefore, we aimed to explore the roles of lncRNAs in the progression of CRC. METHODS In this study, we aimed to identify differentially expressed lncRNAs and messenger RNAs (mRNAs) in CRC by analyzing a cohort of previously published datasets: GSE64857. GO and KEGG pathway analyses were applied to give us insight in the functions of those lncRNAs and mRNAs in CRC. RESULTS Totally, 46 lncRNAs were identified as differentially expressed between stage II and stage III CRC for the first time screening by microarray. GO and KEGG pathway analyses showed that differentially expressed lncRNAs were involved in regulating signal transduction, cell adhesion, cell differentiation, focal adhesion, and cell adhesion molecules. CONCLUSIONS We found three lncRNAs (LOC100129973, PGM5-AS1, and TTTY10) widely co-expressed with differentially expressed mRNAs. We also constructed lncRNA-associated PPI in CRC and found that these lncRNAs may be associated with CRC progression. Moreover, we found that high PGM5-AS1 expression levels were associated with worse overall survival in CRC cancer. We believe that this study would provide novel potential therapeutic and prognostic targets for CRC.
Collapse
Affiliation(s)
- Haishan Zhu
- The First Hospital of ZhaoQing, Guangdong, China
| | - Jiajing Yu
- Huashan Hospital, Fudan University, Shanghai, China
| | - Haifeng Zhu
- The First Hospital of ZhaoQing, Guangdong, China
| | - Yusheng Guo
- Huashan Hospital, Fudan University, Shanghai, China
| | - Shengjie Feng
- Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Discovery and validation of the tumor-suppressive function of long noncoding RNA PANDA in human diffuse large B-cell lymphoma through the inactivation of MAPK/ERK signaling pathway. Oncotarget 2017; 8:72182-72196. [PMID: 29069778 PMCID: PMC5641121 DOI: 10.18632/oncotarget.20053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is one of the leading causes of cancer-related mortality, and responds badly to existing treatment. Thus, it is of urgent need to identify novel prognostic markers and therapeutic targets of DLBCL. Recent studies have shown that long non-coding RNAs (lncRNAs) play an important role in the development of cancer. By using the next generation HiSeq sequencing assay, we determined lncRNAs exhibiting differential expression between DLBCL patients and healthy controls. Then, RT-qPCR was performed for identification in clinical samples and cell materials, and lncRNA PANDA was verified to be down-regulated in DLBCL patients and have considerable diagnostic potential. In addition, decreased serum PANDA level was correlated to poorer clinical outcome and lower overall survival in DLBCL patients. Subsequently, we determined the experimental role of lncRNA PANDA in DLBCL progression. Luciferase reporter assay and chromatin immunoprecipitation assay suggested that lncRNA PANDA was induced by p53 and p53 interacts with the promoter region of PANDA. Cell functional assay further indicated that PANDA functioned as a tumor suppressor gene through the suppression of cell growth by a G0/G1 cell cycle arrest in DLBCL. More importantly, Cignal Signal Transduction Reporter Array and western blot assay showed that lncRNA PANDA inactivated the MAPK/ERK signaling pathway. In conclusion, our integrated approach demonstrates that PANDA in DLBCL confers a tumor suppressive function through inhibiting cell proliferation and silencing MAPK/ERK signaling pathway. Thus, PANDA may be a promising therapeutic target for patients with DLBCL.
Collapse
|
33
|
Yu F, Zhou G, Huang K, Fan X, Li G, Chen B, Dong P, Zheng J. Serum lincRNA-p21 as a potential biomarker of liver fibrosis in chronic hepatitis B patients. J Viral Hepat 2017; 24:580-588. [PMID: 28107589 DOI: 10.1111/jvh.12680] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022]
Abstract
Serum long non-coding RNAs (lncRNAs) are emerging as promising biomarkers for various human diseases. The aim of this study was to investigate the feasibility of using serum long intergenic non-coding RNA-p21 (lincRNA-p21) as a biomarker for chronic hepatitis B patients. Serum lincRNA-p21 levels were quantified using real-time PCR in 417 CHB patients and 363 healthy controls. The promoter methylation level of lincRNA-p21 was detected using bisulphite-sequencing analysis in primary hepatic stellate cells (HSCs). Sera from hepatitis B-infected patients contained lower levels of lincRNA-p21 than sera from healthy controls. Serum lincRNA-p21 levels negatively correlated with stages of liver fibrosis in infected patients. Receiver operating characteristic (ROC) curve analyses suggested that serum lincRNA-p21 had a significant diagnostic value for liver fibrosis in these patients. It yielded an area under the curve of ROC of 0.854 with 100% sensitivity and 70% specificity in discriminating liver fibrosis from healthy controls. There was additionally a negative correlation between serum lincRNA-p21 level and the markers of liver fibrosis including α-SMA and Col1A1. However, there was no correlation of serum lincRNA-p21 level with the markers of viral replication, liver inflammatory activity, and liver function. Notably, during primary HSCs culture, loss of lincRNA-p21 expression was associated with promoter methylation. Serum lincRNA-p21 could serve as a potential biomarker of liver fibrosis in CHB patients. Down-regulation of lincRNA-p21 in liver fibrosis may be associated with promoter methylation.
Collapse
Affiliation(s)
- Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangyao Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - XuFei Fan
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guojun Li
- Department of Hepatology, Ningbo Yinzhou Second Hospital, Ningbo, Zhejiang, China
| | - Bicheng Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peihong Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Nobili L, Ronchetti D, Taiana E, Neri A. Long non-coding RNAs in B-cell malignancies: a comprehensive overview. Oncotarget 2017; 8:60605-60623. [PMID: 28947998 PMCID: PMC5601166 DOI: 10.18632/oncotarget.17303] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/16/2017] [Indexed: 01/06/2023] Open
Abstract
B-cell malignancies constitute a large part of hematological neoplasias. They represent a heterogeneous group of diseases, including Hodgkin's lymphoma, most non-Hodgkin's lymphomas (NHL), some leukemias and myelomas. B-cell malignancies reflect defined stages of normal B-cell differentiation and this represents the major basis for their classification. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nucleotides, for which many recent studies have demonstrated a function in regulating gene expression, cell biology and carcinogenesis. Deregulated expression levels of lncRNAs have been observed in various types of cancers including hematological malignancies. The involvement of lncRNAs in cancer initiation and progression and their attractive features both as biomarker and for therapeutic research are becoming increasingly evident. In this review, we summarize the recent literature to highlight the status of the knowledge of lncRNAs role in normal B-cell development and in the pathogenesis of B-cell tumors.
Collapse
Affiliation(s)
- Lucia Nobili
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione Cà Granda IRCCS Policlinico, Milano, Italy
| | - Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione Cà Granda IRCCS Policlinico, Milano, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione Cà Granda IRCCS Policlinico, Milano, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione Cà Granda IRCCS Policlinico, Milano, Italy
| |
Collapse
|
35
|
Tambasco N, Mastrodicasa E, Salvatori C, Mancini G, Romoli M, Caniglia M, Calabresi P, Verrotti A. Prognostic factors in children with PRES and hematologic diseases. Acta Neurol Scand 2016; 134:474-483. [PMID: 26876986 DOI: 10.1111/ane.12570] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Posterior reversible encephalopathy syndrome (PRES) is a clinical and radiological entity characterized by focal neurological signs, headache, confusion, and seizure, associated with transitory lesions in the posterior areas of the brain detectable with neuroimaging. Among children, one of the most common causes of PRES is cancer. MATERIALS AND METHODS In this review, we present the cases of 5 children developing PRES after stem cell transplantation for hematological disease and review all the cases reported in English literature to investigate outcomes and associated risk factors. RESULTS One hundred and eleven cases were reported. Hypertension was very frequent (80%). Clinical features included seizures (80.1%), headache (44.1%), visual disturbance (26.1%), and mental change (48.6%). EEG was abnormal in 27 of 32 patients. MRI revealed characteristic lesions in all patients even in early stages. Abnormal MRI findings in late stages were associated with neurological sequelae. Nineteen patients died (17.1%) of which 2 of PRES. Among alive patients, 17 had neurological sequelae. Four cases of PRES relapse were described. CONCLUSIONS Thus, all transplant recipients with symptoms consistent with PRES should be promptly recognized to avoid long-term complications or even death.
Collapse
Affiliation(s)
- N. Tambasco
- Department of Neurology; Perugia General Hospital and University of Perugia; Perugia Italy
| | - E. Mastrodicasa
- Pediatric Oncology Hematology Unit; Perugia General Hospital; Perugia Italy
| | - C. Salvatori
- Department of Pediatrics; Perugia General Hospital and University of Perugia; Perugia Italy
| | - G. Mancini
- Department of Pediatrics; Perugia General Hospital and University of Perugia; Perugia Italy
| | - M. Romoli
- Department of Neurology; Perugia General Hospital and University of Perugia; Perugia Italy
| | - M. Caniglia
- Pediatric Oncology Hematology Unit; Perugia General Hospital; Perugia Italy
| | - P. Calabresi
- Department of Neurology; Perugia General Hospital and University of Perugia; Perugia Italy
- IRCCS Fondazione Santa Lucia; Roma Italy
| | - A. Verrotti
- Department of Pediatrics; University of L'Aquila; Italy
| |
Collapse
|