• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4663815)   Today's Articles (2903)   Subscriber (51618)
For: Zhou C, Xie H, Zhu F, Yan W, Yu R, Wang Y. Improving the malignancy prediction of breast cancer based on the integration of radiomics features from dual-view mammography and clinical parameters. Clin Exp Med 2023;23:2357-2368. [PMID: 36413273 DOI: 10.1007/s10238-022-00944-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/05/2022] [Indexed: 11/23/2022]
Number Cited by Other Article(s)
1
Lin JY, Ye JY, Chen JG, Lin ST, Lin S, Cai SQ. Prediction of Receptor Status in Radiomics: Recent Advances in Breast Cancer Research. Acad Radiol 2024;31:3004-3014. [PMID: 38151383 DOI: 10.1016/j.acra.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
2
Azeroual S, Ben-Bouazza FE, Naqi A, Sebihi R. Predicting disease recurrence in breast cancer patients using machine learning models with clinical and radiomic characteristics: a retrospective study. J Egypt Natl Canc Inst 2024;36:20. [PMID: 38853190 DOI: 10.1186/s43046-024-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/06/2024] [Indexed: 06/11/2024]  Open
3
Suzuki Y, Hanaoka S, Tanabe M, Yoshikawa T, Seto Y. Predicting Breast Cancer Risk Using Radiomics Features of Mammography Images. J Pers Med 2023;13:1528. [PMID: 38003843 PMCID: PMC10672551 DOI: 10.3390/jpm13111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]  Open
4
Xin Z, Yan W, Feng Y, Yunzhi L, Zhang Y, Wang D, Chen W, Peng J, Guo C, Chen Z, Wang X, Zhu J, Lei J. An MRI-based machine learning radiomics can predict short-term response to neoadjuvant chemotherapy in patients with cervical squamous cell carcinoma: A multicenter study. Cancer Med 2023;12:19383-19393. [PMID: 37772478 PMCID: PMC10587964 DOI: 10.1002/cam4.6525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA