1
|
Wang D, Feng Q, Wang X, Sun Y, Zhou W, Zhan X. Indole-3-acetic acid enhances the co-transport of proton and phenanthrene mediated by TaSAUR80-5A in wheat roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124522. [PMID: 38986759 DOI: 10.1016/j.envpol.2024.124522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a type of organic pollution that can accumulate in crops and hazard human health. This study used phenanthrene (PHE) as a model PAH and employed hydroponic experiments to illustrate the role of indole-3-acetic acid (IAA) in the regulation of PHE accumulation in wheat roots. At optimal concentrations, wheat roots treated with PHE + IAA showed a 46.9% increase in PHE concentration, whereas treatment with PHE + P-chlorophenoxyisobutyric acid resulted in a 38.77% reduction. Transcriptome analysis identified TaSAUR80-5A as the crucial gene for IAA-enhancing PHE uptake. IAA increases plasma membrane H+-ATPase activity, promoting active transport of PHE via the PHE/H+ cotransport mechanism. These results provide not only the theoretical basis necessary to better understand the function of IAA in PAHs uptake and transport by staple crops, but also a strategy for controlling PAHs accumulation in staple crops and enhancing phytoremediation of PAH-contaminated environments.
Collapse
Affiliation(s)
- Dongru Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Qiurun Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xuke Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Yilei Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Wenhui Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
2
|
Yamazaki C, Fujii N, Miyazawa Y, Kamada M, Kasahara H, Osada I, Shimazu T, Fusejima Y, Higashibata A, Yamazaki T, Ishioka N, Takahashi H. The gravity-induced re-localization of auxin efflux carrier CsPIN1 in cucumber seedlings: spaceflight experiments for immunohistochemical microscopy. NPJ Microgravity 2016; 2:16030. [PMID: 28725738 PMCID: PMC5515524 DOI: 10.1038/npjmgrav.2016.30] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/17/2016] [Accepted: 07/17/2016] [Indexed: 11/25/2022] Open
Abstract
Reorientation of cucumber seedlings induces re-localization of CsPIN1 auxin efflux carriers in endodermal cells of the transition zone between hypocotyl and roots. This study examined whether the re-localization of CsPIN1 was due to the graviresponse. Immunohistochemical analysis indicated that, when cucumber seedlings were grown entirely under microgravity conditions in space, CsPIN1 in endodermal cells was mainly localized to the cell side parallel to the minor axis of the elliptic cross-section of the transition zone. However, when cucumber seeds were germinated in microgravity for 24 h and then exposed to 1g centrifugation in a direction crosswise to the seedling axis for 2 h in space, CsPIN1 was re-localized to the bottom of endodermal cells of the transition zone. These results reveal that the localization of CsPIN1 in endodermal cells changes in response to gravity. Furthermore, our results suggest that the endodermal cell layer becomes a canal by which auxin is laterally transported from the upper to the lower flank in response to gravity. The graviresponse-regulated re-localization of CsPIN1 could be responsible for the decrease in auxin level, and thus for the suppression of peg formation, on the upper side of the transition zone in horizontally placed seedlings of cucumber.
Collapse
Affiliation(s)
- Chiaki Yamazaki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Department of Science and Applications, Japan Space Forum, Tokyo, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Motoshi Kamada
- Future Development Division, Advanced Engineering Services Co., Ltd, Tsukuba, Japan
| | - Haruo Kasahara
- ISS Utilization and Operation Department, Japan Manned Space Systems Co., Tokyo, Japan
| | - Ikuko Osada
- ISS Utilization and Operation Department, Japan Manned Space Systems Co., Tokyo, Japan
| | - Toru Shimazu
- Department of Science and Applications, Japan Space Forum, Tokyo, Japan.,JEM Utilization Center, Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Yasuo Fusejima
- Department of Science and Applications, Japan Space Forum, Tokyo, Japan
| | - Akira Higashibata
- JEM Utilization Center, Japan Aerospace Exploration Agency, Tsukuba, Japan
| | | | - Noriaki Ishioka
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
| | | |
Collapse
|
3
|
Watanabe C, Fujii N, Yanai K, Hotta T, Kim DH, Kamada M, Sasagawa-Saito Y, Nishimura T, Koshiba T, Miyazawa Y, Kim KM, Takahashi H. Gravistimulation changes the accumulation pattern of the CsPIN1 auxin efflux facilitator in the endodermis of the transition zone in cucumber seedlings. PLANT PHYSIOLOGY 2012; 158:239-51. [PMID: 22065422 PMCID: PMC3252099 DOI: 10.1104/pp.111.188615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/02/2011] [Indexed: 05/21/2023]
Abstract
Cucumber (Cucumis sativus) seedlings grown in a horizontal position develop a specialized protuberance (or peg) on the lower side of the transition zone between the hypocotyl and the root. This occurs by suppressing peg formation on the upper side via a decrease in auxin resulting from a gravitational response. However, the gravity-stimulated mechanism of inducing asymmetric auxin distribution in the transition zone is poorly understood. The gravity-sensing tissue responsible for regulating auxin distribution in the transition zone is thought to be the endodermal cell. To characterize the gravity-stimulated mechanism, the auxin efflux facilitator PIN-FORMED1 (CsPIN1) in the endodermis was identified and the localization of CsPIN1 proteins during the gravimorphogenesis of cucumber seedlings was examined. Immunohistochemical analysis revealed that the accumulation pattern of CsPIN1 protein in the endodermal cells of the transition zone of cucumber seedlings grown horizontally differed from that of plants grown vertically. Gravistimulation for 30 min prompted changes in the accumulation pattern of CsPIN1 protein in the endodermis as well as the asymmetric distribution of auxin in the transition zone. Furthermore, 2,3,5-triiodobenzoic acid inhibited the differential distribution of auxin as well as changes in the accumulation pattern of CsPIN1 in the endodermis of the transition zone during gravistimulation. These results suggest that the altered pattern of CsPIN1 accumulation in the endodermis in response to gravistimulation influences lateral auxin transport through the endodermis, resulting in asymmetric auxin distribution in the transition zone.
Collapse
|