1
|
Wang F, Sun X, Dong J, Cui R, Liu X, Li X, Wang H, He T, Zheng P, Wang R. A primary study of breeding system of Ziziphus jujuba var. spinosa. Sci Rep 2021; 11:10318. [PMID: 33990668 PMCID: PMC8121906 DOI: 10.1038/s41598-021-89696-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
Ziziphus jujuba var. spinosa has been used as a windbreak and for soil conservation and water retention. Previous studies focused on pharmacological effects and extraction of chemical components in this species, and very few explored the breeding system. The present study combined the analysis of floral morphology, behavior of flower visitors, and artificial pollination to reveal reproductive characteristics of the species. Its flowers are characterized by dichogamy, herkogamy, and stamen movement, which are evolutionary adaptations to its breeding system. There were more than 40 species of visiting insects, mainly Hymenoptera and Diptera, and the characteristics of dichogamous and herkogamous flower adapted to the visiting insects. The breeding system is outcrossing, partially self-compatible, and demand for pollinators. The fruit setting rate after natural pollination was 2%. Geitonogamy and xenogamy did not significantly increase the fruit setting rate, indicating that the low fruit setting rate was not due to pollen limitation by likely caused by resource limitation or fruit consumption. The fruit setting rate of zero in emasculated and in naturally and hand self-pollinated individuals suggested the absence of apomixis and spontaneous self-pollination. The above results can be utilized in studies on evolution and cultivation of Z. jujuba var. spinosa.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiaohan Sun
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Jibin Dong
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Rong Cui
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiangxiang Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Tongli He
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Peiming Zheng
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China.
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China.
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Kerbs B, Crawford DJ, White G, Moura M, Borges Silva L, Schaefer H, Brown K, Mort ME, Kelly JK. How rapidly do self-compatible populations evolve selfing? Mating system estimation within recently evolved self-compatible populations of Azorean Tolpis succulenta (Asteraceae). Ecol Evol 2020; 10:13990-13999. [PMID: 33391697 PMCID: PMC7771160 DOI: 10.1002/ece3.6992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
Genome-wide genotyping and Bayesian inference method (BORICE) were employed to estimate outcrossing rates and paternity in two small plant populations of Tolpis succulenta (Asteraceae) on Graciosa island in the Azores. These two known extant populations of T. succulenta on Graciosa have recently evolved self-compatibility. Despite the expectation that selfing would occur at an appreciable rate (self-incompatible populations of the same species show low but nonzero selfing), high outcrossing was found in progeny arrays from maternal plants in both populations. This is inconsistent with an immediate transition to high selfing following the breakdown of a genetic incompatibility system. This finding is surprising given the small population sizes and the recent colonization of an island from self-incompatible colonists of T. succulenta from another island in the Azores, and a potential paucity of pollinators, all factors selecting for selfing through reproductive assurance. The self-compatible lineage(s) likely have high inbreeding depression (ID) that effectively halts the evolution of increased selfing, but this remains to be determined. Like their progeny, all maternal plants in both populations are fully outbred, which is consistent with but not proof of high ID. High multiple paternity was found in both populations, which may be due in part to the abundant pollinators observed during the flowering season.
Collapse
Affiliation(s)
- Benjamin Kerbs
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| | - Daniel J. Crawford
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Griffin White
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- ETH ZurichFunctional Genomics Center ZurichZurichSwitzerland
| | - Mónica Moura
- InBIO Laboratório Associado, Pólo dos AçoresFaculdade de Ciências TecnoclogiaCIBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade dos AçoresPonta DelgadaPortugal
| | - Lurdes Borges Silva
- InBIO Laboratório Associado, Pólo dos AçoresFaculdade de Ciências TecnoclogiaCIBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade dos AçoresPonta DelgadaPortugal
| | - Hanno Schaefer
- Department of Ecology and Ecosystem ManagementPlant Biodiversity ResearchTechnical University of MunichFreisingGermany
| | - Keely Brown
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| | - Mark E. Mort
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| | - John K. Kelly
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| |
Collapse
|
3
|
Gibson MJS, Crawford DJ, Holder MT, Mort ME, Kerbs B, de Sequeira MM, Kelly JK. Genome-wide genotyping estimates mating system parameters and paternity in the island species Tolpis succulenta. AMERICAN JOURNAL OF BOTANY 2020; 107:1189-1197. [PMID: 32864742 DOI: 10.1002/ajb2.1515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
PREMISE The mating system has profound consequences, not only for ecology and evolution, but also for the conservation of threatened or endangered species. Unfortunately, small populations are difficult to study owing to limits on sample size and genetic marker diversity. Here, we estimated mating system parameters in three small populations of an island plant using genomic genotyping. Although self-incompatible (SI) species are known to often set some self-seed, little is known about how "leaky SI" affects selfing rates in nature or the role that multiple paternity plays in small populations. METHODS We generalized the BORICE mating system program to determine the siring pattern within maternal families. We applied this algorithm to maternal families from three populations of Tolpis succulenta from Madeira Island and genotyped the progeny using RADseq. We applied BORICE to estimate each individual offspring as outcrossed or selfed, the paternity of each outcrossed offspring, and the level of inbreeding of each maternal plant. RESULTS Despite a functional self-incompatibility system, these data establish T. succulenta as a pseudo-self-compatible (PSC) species. Two of 75 offspring were strongly indicated as products of self-fertilization. Despite selfing, all adult maternal plants were fully outbred. There was high differentiation among and low variation within populations, consistent with a history of genetic isolation of these small populations. There were generally multiple sires per maternal family. Twenty-two percent of sib contrasts (between outcrossed offspring within maternal families) shared the same sire. CONCLUSIONS Genome-wide genotyping, combined with appropriate analytical methods, enables estimation of mating system and multiple paternity in small populations. These data address questions about the evolution of reproductive traits and the conservation of threatened populations.
Collapse
Affiliation(s)
- Matthew J S Gibson
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045-7534, USA
| | - Daniel J Crawford
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045-7534, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045-7534, USA
| | - Mark T Holder
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045-7534, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045-7534, USA
| | - Mark E Mort
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045-7534, USA
| | - Benjamin Kerbs
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045-7534, USA
| | - Miguel Menezes de Sequeira
- Madeira Botanical Group, Faculty of Life Sciences, University of Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, 9501-81, Ponta Delgada, Portugal
| | - John K Kelly
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, 66045-7534, USA
| |
Collapse
|
4
|
Hikosaka K. New year's greetings 2019 from the Journal of Plant Research. JOURNAL OF PLANT RESEARCH 2019; 132:1-2. [PMID: 30666512 DOI: 10.1007/s10265-019-01087-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Japan.
| |
Collapse
|
5
|
Takahashi K. Virtual issue: Alpine and subalpine plant communities: importance of plant growth, reproduction and community assemblage processes for changing environments. JOURNAL OF PLANT RESEARCH 2018; 131:891-894. [PMID: 30264281 DOI: 10.1007/s10265-018-1065-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural plant communities are exposed to environmental changes such as global warming and increased human activities. It is thought that alpine and subalpine ecosystems with cool climatic conditions are sensitive to environmental changes. This virtual issue introduces multidisciplinary research at alpine and subalpine plant communities. The articles include research on (1) species diversity, vegetation and biomass, (2) species assembly, (3) climate and growth of alpine plants, (4) reproduction of alpine plants, (5) differences of growth traits among coexisting species, (6) vegetation changes by human activities and overgrazing of deer, and (7) differentiation of growth traits among ecotypes in relation to climatic conditions. These thirteen articles provide valuable information for future research on the effects of environmental changes on alpine and subalpine plant communities.
Collapse
Affiliation(s)
- Koichi Takahashi
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan.
- Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, 390-8621, Japan.
| |
Collapse
|
6
|
Casazza G, Carta A, Giordani P, Guerrina M, Peruzzi L, Minuto L. Reproductive biology of the threatened Lilium pomponium (Liliaceae), a species endemic to Maritime and Ligurian Alps. JOURNAL OF PLANT RESEARCH 2018; 131:633-640. [PMID: 29500748 DOI: 10.1007/s10265-018-1019-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 02/07/2018] [Indexed: 05/03/2023]
Abstract
Pollination ecology and breeding system of Lilium pomponium L. were studied, and their effect on the reproductive outcome was assessed. This species has high conservation interest in Europe, because it is included in Annex V of the EU Habitat Directive and it is one out of the five Lilium species listed in IUCN Global Red List. To achieve our aim, the pollen vectors as well as the effect of bagging, emasculation and artificial pollination on reproductive output were studied. The most frequent visitor was the Lepidopteran Gonepteryx rhamnii. In general, reproductive outputs were close to zero for all the self-pollination treatments; however, geitonogamy and facilitated selfing seem slightly more efficient than autogamy, as also confirmed by self-compatibility and autofertility indices. Altogether, our results suggest a self-incompatible outcrossing breeding system, with a poor capacity for selfing. Nevertheless, climate change and anthropic threats might promote a shift toward self-fertilization, even maladaptive, favouring the few individuals able to produce selfed seeds.
Collapse
Affiliation(s)
- Gabriele Casazza
- DISTAV, University of Genoa, Corso Europa 26, 16132, Genoa, Italy.
| | - Angelino Carta
- Department of Biology, Unit of Botany, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Paolo Giordani
- DIFAR, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Maria Guerrina
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Lorenzo Peruzzi
- Department of Biology, Unit of Botany, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Luigi Minuto
- DISTAV, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| |
Collapse
|
7
|
Nguimkeng GED, Zapfack L, Ntsomboh-Ntsefong G, Temegne NC, Youmbi E. Assessment of the modes of pollen dispersal of Vernonia amygdalina Del. and Vernonia calvoana Hook. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajps2017.1550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Casazza G, Lumini E, Ercole E, Dovana F, Guerrina M, Arnulfo A, Minuto L, Fusconi A, Mucciarelli M. The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis. PLoS One 2017; 12:e0171866. [PMID: 28192471 PMCID: PMC5305098 DOI: 10.1371/journal.pone.0171866] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/26/2017] [Indexed: 01/12/2023] Open
Abstract
Berardia subacaulis Vill. is a monospecific genus that is endemic to the South-western Alps, where it grows on alpine screes, which are extreme habitats characterized by soil disturbance and limiting growth conditions. Root colonization by arbuscular mycorrhizal fungi (AMF) is presumably of great importance in these environments, because of its positive effect on plant nutrition and stress tolerance, as well as on structuring the soil. However, there is currently a lack of information on this topic. In this paper, we tested which soil characteristics and biotic factors could contribute to determining the abundance and community composition of AMF in the roots of B. subacaulis, which had previously been found to be mycorrhizal. For such a reason, the influence of soil properties and environmental factors on AMF abundance and community composition in the roots of B. subacaulis, sampled on three different scree slopes, were analysed through microscopic and molecular analysis. The results have shown that the AMF community of Berardia roots was dominated by Glomeraceae, and included a core of AMF taxa, common to all three scree slopes. The vegetation coverage and dark septate endophytes were not related to the AMF colonization percentage and plant community did not influence the root AMF composition. The abundance of AMF in the roots was related to some chemical (available extractable calcium and potassium) and physical (cation exchange capacity, electrical conductivity and field capacity) properties of the soil, thus suggesting an effect of AMF on improving the soil quality. The non-metric multidimensional scaling (NMDS) ordination of the AMF community composition showed that the diversity of AMF in the various sites was influenced not only by the soil quality, but also by the slope. Therefore, the slope-induced physical disturbance of alpine screes may contribute to the selection of disturbance-tolerant AMF taxa, which in turn may lead to different plant-fungus assemblages.
Collapse
Affiliation(s)
| | - Erica Lumini
- Istituto per la Protezione Sostenibile delle Piante–CNR, Viale P.A. Mattioli 25, TORINO, Italy
| | - Enrico Ercole
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale P.A. Mattioli 25, TORINO, Italy
| | - Francesco Dovana
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale P.A. Mattioli 25, TORINO, Italy
| | - Maria Guerrina
- Università di Genova, DISTAV, Corso Europa 26, GENOVA, Italy
| | - Annamaria Arnulfo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale P.A. Mattioli 25, TORINO, Italy
| | - Luigi Minuto
- Università di Genova, DISTAV, Corso Europa 26, GENOVA, Italy
| | - Anna Fusconi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale P.A. Mattioli 25, TORINO, Italy
| | - Marco Mucciarelli
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale P.A. Mattioli 25, TORINO, Italy
| |
Collapse
|